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Scheduling Three Trains is NP-Complete

Christian Scheffer∗

Abstract

We consider the Train Scheduling Problem which
can be described as follows: Given m trains via their
tracks, i.e., curves in the plane, and the trains’ lengths,
we want to compute a schedule that moves collision-free
and with limited speed the trains along their tracks such
that the maximal travel time is minimized. We prove
that the Train Scheduling Problem is NP-complete
already for three trains.

Furthermore, we extend our NP-completeness con-
struction to the Aircraft Scheduling Problem
which means from the case of three trains, i.e., sub-
curves, to the case of three aircrafts, i.e., disks or squares
moving on curves.

1 Introduction

In this paper, we consider a parallel motion planning
problem, the Train Scheduling Problem which is
naturally motivated from practice and defined as fol-
lows: Consider k given trains each one defined as a pair
which is made up of a curve in the plane, called the track
of the train and a value, called the length of the train.
We want to compute a schedule moving collision-free
and with bounded velocity all trains along their tracks
from their tracks’ start points to their tracks’ end points
such that the maximal travel time called the makespan
is minimized.

Furthermore, we consider the Aircraft Schedul-
ing Problem which considers aircrafts, i.e., squares or
disks, instead of trains, i.e., subcurves of the tracks.

1.1 Our Results

1. We show that the Train Scheduling Problem
is NP-complete already for three trains, see Theo-
rem 1.

2. We establish that the Aircraft Scheduling
Problem is NP-complete already for three air-
crafts, see Theorem 6.
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1.2 Related Work

Multi-robot coordination is one of the most famous and
traditional interfaces between robotics and computa-
tional geometry. Due to the amazing large landscape
of parallel motion planning topics and corresponding
results, we refer to surveys as [7, 8, 9] for detailed
overviews.

In their pioneering work, Hopcroft, Schwartz, and
Sharir [6] show that even the simple Warehouseman’s
Problem which requires to coordinate a set of rectan-
gles from a start configuration to a target configuration
inside a rectangular box is PSPACE-hard.

In a previous paper [4] accepted to the International
Symposium on Computational Geometry 2018, we con-
sider the variant of our Aircraft Scheduling Prob-
lem such that the aircrafts’ movements are not re-
stricted to curves but to the common Euclidean plane.
Amongst others, we showed that this 2D variant is NP-
complete for arbitrary many vehicles and gave a con-
stant factor approximation for the case that the air-
crafts are sufficiently separated. Furthermore, in [2] we
demonstrate a practical realization of our approaches.

In a recent paper [13], we show that there is no
FPTAS neither for the Train Scheduling Problem
nor for the Aircraft Scheduling Problem but do
not answer the question whether there is an efficient
algorithm for constant many vehicles.

O`Donnell and Lozano-Perez [11] consider the
Path Coordination Problem which corresponds
to our Aircraft Scheduling Problem and give
a O(q2 log q) runtime algorithm for coordinating two
robots at which only forward movements are allowed
and q is the maximal number of segments on the
considered trajectories. Akella and Hutchinson [1]
consider Trajectory Coordination Problems in
which both the traveling curves and the velocity at
which the robots traverse the curves are known. They
showed that it is NP-complete to compute departure
times for arbitrary many robots such that a minimum-
time collision-free robot coordination is achieved.

Reif and Sharir [12] consider Dynamic Movers
Problems in which a given polyhedral body B has to
be moved collision-free within some 1D, 2D, or 3D space
by translations and rotations from a start position to a
target position amid a set of obstacles that rotate and
move along known trajectories. They provide PSPACE-
hardness of the 3D dynamic movement problem if the
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body B has to hold a velocity bound and NP-hardness
if the body’s velocity is unbounded. Furthermore, Reif
and Sharir [12] consider Asteroid Avoidance Prob-
lems as a special variant of Dynamic Movers Prob-
lems in which neither the moving body B nor the ob-
stacles may rotate. In particular, Reif and Sharir pro-
vide a near-linear time algorithm for the 1-dimensional
Asteroid Avoidance Problem in which each of the
obstacles is a polyhedron traveling with fixed (possi-
ble distinct) translational velocity along a 1-dimensional
line. Reif and Sharir provide an efficient algorithm for
the two-dimensional Asteroid Avoidance Problem
if the number of the obstacles is a constant and for
the three-dimensioal Asteroid Avoidance Problem
a single exponential time and a polynomial space algo-
rithm for a convex polyhedron B and arbitrary many
obstacles.

2 Preliminaries

A train is a pair (H,Lh) where Lh ∈ R>0 is the length
of the train and H is the track of the train which is
defined as a curve H : [0, 1] → R2. We simultaneously
denote by H, the function H : [0, 1]→ R2 and its image
{p ∈ R2 | there is a t ∈ [0, 1] with p = H(t)}. The
length |T | of a track T : [0, 1] → R2 in the ambient
space is defined as its length w.r.t. the Euclidean norm,

i.e., |T | :=
∫ 1

0
||T ′(t)||2 dt. A k-fleet is an k-tuple of

trains. Two trains (H,Lh) and (X,Lx) collide for the
parameters λh and λx if the subcurves of H and X with
midpoints H(λh) and X(λx) and lengths Lh and Lx are
intersecting each other. A reparametrization of a train
(H,Lh) is a continuous and piecewise linear function
α : [0,+∞) → [0, 1] such that (1) α(0) = 0, (2) there
is a minimal value λ ≥ 0 with α(µ) = 1 for all µ ≥
λ, and (3) the speed of the train is upper-bounded by
1, i.e., for each point in time t ∈ [0,+∞), both left
and right derivative of H ◦ α have Euclidean length at
most 1. A schedule for an k-fleet ((T1, L1), . . . , (Tk, Lk))
is a tuple (α1 : [0,M1]→ [0, 1], . . . , αk : [0,Mk → [0, 1])
such that (1) αi is a reparametrization for the train
(Ti, Li) for all i ∈ {1, . . . , k} and (2) Ti and Tj do not
collide for the parameters αi(t) and αj(t) for all i 6= j ∈
{1, . . . , k} and t ≥ 0. The makespan of the schedule
(α1 : [0,M1]→ [0, 1], . . . , αk : [0,Mk → [0, 1]) is defined
as the maximum Mmax of the M1, . . . ,Mk. Wl.o.g., all
travel times are equal to Tmax by extending αi with
αi(t) = αi(Mi) for all Mi < t < Mmax. Given a k-
fleet F , the Train Scheduling Problem asks for a
schedule with minimal makespan.

The parameter space P of a k-fleet
((T1, L1), . . . , (Tk, Lk)) is defined as P :=
[0, |T1|] × · · · × [0, |Tk|]. The forbidden or black
space B of P is the union of all parameter points
p = (λ1, . . . , λk) ∈ P such that there are two trains Ti

and Tj that collide with the parameters λi and λj . The
allowed or white space W is defined as P \B◦ where B◦
denotes the interior of B. Note that the white space W
is closed.

A path is a curve π : [0, 1] → P and the length `(π)
of π is defined as its length w.r.t. the maximum metric,

i.e., `(π) :=
∫ 1

0
||π′(t)||∞ dt. An a-b-path in the free

space diagram of ((T1, L1), . . . , (Tk, Lk)) is a path π ⊂
W between a and b. If not other stated, a path in the
free space diagram is a path π ⊂ W connecting the
points (0, . . . , 0) and (|T1|, . . . , |Tk|).

3 Scheduling Three Vehicles is NP-complete

In this section, we show that surprisingly the Train
Scheduling Problem already for three trains,
Train (3) for short, and the Aircraft Scheduling
Problem already for three aircrafts, Aircraft (3) for
short, are NP-complete. We start with the hardness
proof for Train (3).

Theorem 1 Train (3) is NP-complete.

We show that Train (3) is NP-complete by proving
that it is NP-complete to decide wether there is a sched-
ule with a makespan no larger than M where M is an
input value. Given an M , w.l.o.g., we set s := (0, 0, 0)
and t := (M,M,M). It is obvious that in an optimal
schedule for each point in time there is a train that trav-
els with speed 1. Thus we obtain:

Observation 2 For a given fleet F , there is a schedule
with makespan M if and only if there is an s-t-path of
length M w.r.t. the maximum metric in the free space
diagram of F .

In Section 3.1, we construct an instance I of a 3D-
shortest path problem that implies a polynomial time
reduction from 3-SAT to a 3D-shortest path problem
that is NP-complete. In Section 3.5, we give a reduction
of 3-SAT to Train (3) by providing a construction of an
instance for Train (3) whose optimal makespan is equal
to the shortest path distance of I.

3.1 An NP-Completeness Construction for 3D-
Shortest Paths

We consider the three-dimensional Euclidean space R3

and refer to the three corresponding axes and coor-
dinates as h-, x-, and y-axis and -coordinates. For
a ∈ {h, x, y}, the a-length of a point set A ⊆ R3 is
defined as maxp,q∈A |p.a − q.a| where p.a and q.a de-
note the a-coordinates of p and q. Furthermore, the
a-distance between two connected point sets A,B ⊂ R3

is defined as minp∈A,q∈B |p.a− q.a|.
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Definition 3 A plank is an axis-aligned cuboid R ⊂ R3

whose h-, x- or y-length is long enough to be assumed
infinity. The width and height of a plank are the maxi-
mum and minimum of the lengths of R in the remaining
two axes directions. A plank R is

• horizontal if the h- and x-lengths of R are the height
of R and inifinity

• vertical if the h- and y-lengths of R are the height
of R and infinity, and

• perpendicular if the y- and h-lengths of R are the
height of R and infinity.

The orientation of R is horizontal, vertical, or perpen-
dicular.

Next, we define the shortest path problem to which
we reduce 3-SAT.

Definition 4 An instance I =: (s, t, L, ξ,R) of
3Dplanks asks if there is a shortest path of length
L ∈ R≥0 w.r.t. the maximum metric between the points
s, t ∈ R3 and among the set R of horizontal, vertical,
or perpendicular planks that have all a height of ξ.

For the polynomial-time reduction of 3-SAT to
3Dplanks, we apply the path encoding technique as
already used for hardness results of other 3D-shortest
path problems [3, 10]. However, in the context of
our problem setting we need to ensure important
new aspects, see Properties (P1)-(P8), because our
construction needs to be realisable by the free space
diagram of three trains.

In the remainder of this section we show that
3Dplanks is NP-complete. First we prove that
3Dplanks is in NP. After that we give the construc-
tion of I and its analysis.

The piecewise linear environment implies that a
shortest path is piecewise linear. Thus, the length of
a given path can be calculated within polynomial time
w.r.t. the complexity of the environment. Hence, we
obtain that 3Dplanks is in NP.

3.2 Outline of the Construction

We consider shortest paths between two points s and t
at which st induces a line that has a slope close to 1
w.r.t. x-, y-, and h-coordinate, see Figures 1.

We construct an instance with exponential many
topological different shortest path classes representing
all possible variable assignments for a given 3-SAT for-
mula F . Thus, we first construct a sequence of n path
splitter gadgets, see the green gadget in Figure 1, at
which each path splitter gadget doubles the number of
incoming shortest path classes.
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Figure 1: (Top) Construction of I made up of (3-way)
splitter (blue and green), blocker (lila), and shuffle gad-
gets (orange). (Bottom) Detailed illustration of the
used gadgets.
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Next it follows a sequence of m clause filters. A clause
filter realizes a clause Ci = (`i1 ∨ `i2 ∨ `i3) and is made
up of three parallel literal filters at which parallel means
that each literal filter is passed by an individual tube
containing 2n shortest path classes. In order to produce
these tubes, a clause filter starts with a 3-way path split-
ter gadget, see the blue gadget in Figure 1, and ends with
an inverted 3-way path splitter gadget which merges
three input tubes of 2n shortest path classes into one
tube of 2n shortest path class.

Inside a clause filter Ci, each literal filter represents a
literal `ij and is made up of a sequence of n path shuf-
fle gadgets (see the orange gadgets in Figure 1) which
is interrupted by one path blocker gadget (see the lila
gadget in Figure 1). The path blocker gadget blocks all
shortest path classes whose represented bit assignment
for b1, . . . , bn contradicts `ij . In particular, the shortest
path classes inside each literal filter lie inside a thin di-
agonal tube. The prefixed sequence of path shuffle gad-
gets ensures that all shortest path classes corresponding
to bit assignments that contradict `ij lie either on the
top left side of the tube or on the bottom right side of
the tube. Correspondingly, the path blocker gadgets in-
creases the length of all these shortest path classes to
be blocked, i.e., blocks them from being a shortest path
of length L between s and t. Finally, the postposed se-
quence of path shuffle gadget rebuilds the configuration
of the shortest path classes inside the tube.

Finally, the bundle of all remaining shortest path
classes are merged by a sequence of n inverted path
splitting gadgets. By the above discussion it follows
that F is satisfiable if and only if there is a shortest
path of length L between s and t which we call prop-
erty (P1).

The first sequence of n path splitter gadgets generates
2n shortest path classes lying inside a tube of width
ε � 1 which is maintained for all three copies inside
each clause filter.

Each gadget is made up of O(1) planks, see Figure 1
for an overview and the following section for more de-
tails. All in all we have 2n+m(2 +n+ 1) path gadgets
which implies that I has O(mn) planks which we call
property (P2).

3.3 Detailed Construction of the Path Gadgets

In the following, we discuss the approaches of path split-
ter gadgets, path blocker gadgets, path shuffle gadgets,
and 3-way path splitter gadgets separately, see Figure 1.
The inverted versions of the path splitter and the 3-way
path splitter gadget are constructed in inverted order.

The input to the path splitter gadget is a thin bundle
of shortest path classes, see the green gadget in Figure 1.
The produced output is a bundle containing two copies
of the input bundle. A perpendicular plank blocks paths
from being a shortest path by enforcing the “unwanted”

paths to take a detour around the perpendicular plank,
see the black bar and the red arrow in the green gadget
of Figure 1.

The path blocker gadget blocks either an upper or
lower part of the input bundle of shortest paths from
being an overall shortest path.

The path shuffle gadget realizes a perfect shuffle to
all input shortest path classes and is made up of three
stages, see the orange gadget in Figure 1: A path splitter
gadget which is colored in gray and two path blocker
gadgets colored in yellow, gold, and orange.

The 3-way path splitter gadget produces three in-
stances π1, π2, and π3 of the input shortest path classes
for a clause filter representing a clause Ci = (`i,1∨ `i,2∨
`i,3), see the blue gadget of Figure 1. Each instance π1,
π2, and π3 represents one of the three literals `i,1, `i,2,
and `i,3 which are logically linked by an “or”. Thus, a
plank in the clause filter corresponding to Ci is only al-
lowed to have an influence to either the shortest paths in
π1, π2, or π3. In order to ensure that, we construct the
3-way path splitter gadget such that the distance be-
tween two points from two different bundles of π1, π2,
and π3 on a diagonal line ` is a constant times larger
than the widths of the planks used in the clause filter
of Ci, see Figure 1. In particular, the 3-way path split-
ter gadget is made up of three stages: (1) Four planks,
splitting the input shortest path class into two classes,
(2) four planks, splitting the upper class of Stage (1)
into two shortest path classes π1 and π2, and (3) two
planks extending the length of the second shortest path
class π3 of Stage (1) about a distance equal to the length
extension caused by Stage (2) for π1 and π2.

In the following section, we prove that the remaining
properties (P3)-(P8) of Theorem 5 are fulfilled by I.

Theorem 5 3Dplanks is NP-complete. In particu-
lar, for each 3-SAT formula Φ with n variables and m
clauses, there is an instance I = I(Φ) = (s, t, L, ξ,R)
of 3Dplanks (see Figure 1) such that

• (P1): the shortest s-t-path has a length of L if and
only if Φ is satisfiable,

• (P2): there are O(mn) planks,

• (P3): all planks have the same height ξ,

• (P4): the minimal width of a plank is 1,

• (P5): the minimal h-distance of two planks that
are not perpendicular is Ω(1),

• (P6): all planks have a width of O(mn),

• (P7): the maximal x-distance between two vertical
planks of the same path gadget is O(mn), and

• (P8): the maximal y-distance between two con-
secutive horizontal planks of the same path gadget
is O(mn).
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3.4 Properties (P3)-(P8)

Property (P3) is trivially ensured by explicitly using
planks of a common height. Furthermore, w.l.o.g. we
assume that the minimal width of planks used in I is 1
which is property (P4). Otherwise, we scale the whole
construction of I which maintains that all planks have
the same height.

For each path gadget, we ensure that the h-distance
between two planks that are not perpendicular is Ω(1).
As the input and output path bundles of all path gad-
gets are diagonal, we can construct I such that the
length of the (shortest) subpath between two consec-
utive path gadgets is in Θ(mn). Analogously, we en-
sure that the shortest path distance between two stages
of the same path shuffle or 3-way path splitter gadget
is Θ(mn). Thus we can ensure in our overall construc-
tion that the h-distance between any pair of planks that
are not perpendicular is at least Θ(1) which is prop-
erty (P5).

In our reduction from 3-SAT to 3Dplanks, we ap-
ply that some planks are only passed at one side. We
guarantee that by choosing the widths of these planks
“sufficiently large” (see below for details) such that pass-
ing the plank at a forbidden side would cause a detour
which prevents the path from being shortest. In the fol-
lowing, we discuss the details of that approach for each
type of path gadgets separately.

• The path splitter gadget is constructed such that
doubling the input shortest path classes causes a
detour of constant length. In order to enforce that
a shortest path passes through all 2n path splitter
gadgets despite a detour of length Θ(n), we choose
the widths of the planks P1, P2, P8, and P9 of all
2n path splitter gadgets as Θ(n). Furthermore, we
choose the widths of the planks P4, P5, P6, and P7

as Θ(1) to ensure that a shortest path passes the
planks P4, P5, P6, and P7 on the required sides of
the planks, as illustrated in Figure 1.

• A path blocker gadget simply needs to ensure that
shortest path classes that represent variable assign-
ments that are forbidden by the represented literal
are blocked from being an overall shortest path.
Thus, it suffices to choose the width of all planks
of all path blocker gadgets as Θ(1).

• Each path splitter of a path shuffle gadget causes a
detour of constant lengths. Inside each clause filter,
a shortest path passes through n path shuffle gad-
gets resulting in summed detour of O(n). In order
to enforce that a shortest path inside each clause
filter passes through all n path shuffle gadgets of a
literal filter, we choose the widths of the first, the
second, and the last two planks of the path split-
ter part of the path shuffle gadget as Θ(n). The

widths of the remaining planks are chosen equal to
the widths of the corresponding planks in the path
splitter and path blocker gadgets.

• The 3-way path splitter gadget ensures that the
distance between two points from different out-
put bundles is Θ(n). This results in a detour of
length Θ(n) caused by each 3-way path splitter gad-
get. In order to ensure that a shortest path passes
each plank of a clause filter only at the intended
side we choose the width of each one-sided passed
plank larger than the entire detour length caused
by all m clause filters, i.e., as Θ(mn).

From the above discussion it follows that the widths
of all planks used in our overall construction of I are
upper-bounded by O(mn) which is property (P6).

Let P1 and P2 be two vertical planks of the same path
gadget such that there is not another vertical plank ly-
ing between P1 and P2 w.r.t. the h-axis. We distinguish
wether P1 and P2 belong to a path splitter gadget or not:
If P1 and P2 belong to a path splitter gadget, our con-
struction of I ensures that the x-distance between P1

and P2 is 0. As a path splitter gadget is made up ofO(1)
planks with widths no larger than O(1) we obtain that
the x-distance between P1 and P2 is upper-bounded by
O(1). If P1 and P2 belong to path shuffle or a 3-way
path splitter gadget, we combine that the path distances
between different stages of the path gadget is upper-
bounded by O(mn), that the planks have a width of
O(mn), that each stage is made up of O(1) planks, and
that the path shuffle and the 3-way path splitter gad-
get are made up of three stages. Thus, we obtain that
the x-distance between P1 and P2 is upper-bounded by
O(mn). In both cases, we obtain that the x-distance
between P1 and P2 is upper-bounded by O(mn) which
is property (P7).

A symmetric argument implies that the y-distance
between two consecutive horizontal planks belonging
to the same path gadget is in O(mn) which is prop-
erty (P8) concluding the proof of Theorem 5.

3.5 Reduction of 3-SAT to Train (3)

We construct a 3-fleet with optimal makespan equal to
the shortest path distance of the instance I constructed
in Section 3.1. A triple (λh, λx, λy) of parameters for
the three trains of a 3-fleet F is forbidden if at least two
trains collide with their parameters independent from
the parameter of the third train. This means the for-
bidden space B of F is the union of a set of axis-aligned
planks at which each single plank corresponds to an in-
tersection point of two curves, see Figure 2(a)+(b).

The lengths of the planks in the axes directions corre-
sponding to the colliding trains are equal to the lengths
of the colliding trains. Furthermore, the plank extends
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Figure 2: (a) A vertical plank as part caused by an
intersection point of the curves H and X that are illus-
trated in (b). The length of the plank in y-axis direction
is infinite because a collision of the trains on H and X
is independent from the position of the train on Y . (c)
Replacing a vertical plank R by a vertical stairway SR,
and (d) the curves Hstair and Xstair.

in parallel to the axis corresponding to the third train
through the whole parameter space of H, X, and Y .
Thus, we occasionally say that a plank has a length of
infinity (w.r.t. the axis corresponding to the train which
is not necessarily involved in the collision).

The forbidden space of F is piecewise linear impying
that a shortest path π′ inside the free space diagram is
piecewise linear, i.e., π′ can be represented by a polyno-
mial sequence of edges it flips over. This implies, that
the length of π′ can be determined in polynomial time.
Thus, Observation 2 implies that Train (3) is in NP.

In order to prove that Train (3) is NP-hard we con-
sider an arbitrary 3-SAT formula Φ and the correspond-
ing instance I := I(Φ) := (s, t, L, ξ,R) of 3Dplanks
constructed in Section 3.1. We construct a 3-fleet
F := ((H,Lh), (X,Lx), (Y, Ly)) and a value L′ such that
verifying if there is an optimal schedule for F with max-
imal travel time no larger than L′ is equivalent to ver-
ifying if there is a shortest path with length no larger
than L for I. As the construction of I induces a poly-
nomial time reduction from 3-SAT to 3Dplanks, it fol-
lows that the construction of F induces a polynomial
time reduction from 3-SAT to Train (3).

Straight forwardly substituting the planks of I by
planks that are caused by intersection points of the
trains (H,Lh), (X,Lx), and (Y,Ly) is not possible be-
cause in the construction of I we use different horizon-
tal planks that have different widths while all horizon-
tal planks in the forbidden space of (H,Lh), (X,Lx),
and (Y,Ly) have a width of Ly. Furthermore, there is

the same issue with vertical and perpendicular planks.
Thus, we replace each single plank R of I by a so called
stairway SR and give an approach how to construct
three trains whose forbidden space modulo translations
is equal to SR, see Figures 2(c)+(d) and Figure 6 for
illustrations and Section A for a definition of the used
stairways.

By assembling all resulting curves corresponding to
stairways, we obtain the trains (H,LH), (X,Lx), and
(Y, Ly), see Figure 5, concluding the proof of Theorem 1.

3.6 Reduction of 3-SAT to Aircraft (3)

We remark that scheduling three aircrafts, i.e., squares
or disks instead of trains, i.e., subcurves is also NP-
complete. Generally speaking, we use the 3D-shortest
path instance I and substitute planks of I by (curved)
wedges, see Figure 3 and Figures 7, 8, 9, and 10.
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Figure 3: (a)+(c): In the case of square-shaped and
disk-shaped aircrafts, we substitute planks by wedges
and curved wedges. (b)+(d): In a fixed configuration,
two aircrafts collide if and only if the centre of the first
aircraft lies inside the square B2(c) with radius 2 and
centre c in the midpoint of the second aircraft.

Theorem 6 Aircraft (3) is NP-complete for disk-
shaped and square-shaped aircrafts.

4 Conclusion

We presented hardness results for parallel motion plan-
ning problems considering objects to moved collision-
free along their tracks. Our hardness constructions in-
volve curves that are quite dense in the following man-
ner: Driemel et al. [5] say that a curve is c-packed for a
c ≥ 0 if the total intersection of the curve with any ball
of radius r > 0 is no larger than cr. The curves con-
structed in our hardness proof are not c-packed for any
constant c. Thus, we ask the question whether there
is an efficient algorithm for scheduling three trains or
aircrafts along c-packed curves.
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A Details on the Hardness of Scheduling Three Trains

A.1 A Schematic Illustration of the Hardness Construction for Three Trains

s

t
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Figure 4: The whole NP-hardness construction corresponding to a given 3-SAT formular Φ = (`1,1 ∨ `1,2 ∨ `1,3) ∧
(`2,1 ∨ `2,2 ∨ `2,3).



CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A.2 Illustrations of the Schedule Gadgets and the Entire Construction
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Figure 5: The approach for constructing the curves H, X, and Y for the 3-SAT formular Φ = (`1,1 ∨ `1,2 ∨ `1,3) ∧
(`2,1 ∨ `2,2 ∨ `2,3). Each path gadget results in a corresponding schedule gadget. The order in which the schedule
gadgets are passed is the same in which the corresponding path gadgets are passed, see Figure 4.
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A.3 Technical Details of the Construction
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Figure 6: Remaining five types of stairways and the corresponding pairs of trains.

Definition 7 Let ` ∈ R≥0.

• An increasing vertical stairway S corresponding to a vertical plank R with width w and height ξ is the connected union
of a sequence of vertical planks with height ξ and which are increasing w.r.t. h- and x-coordinates, as illustrated in
Figure 2(c).

• A decreasing vertical stairway corresponding to vertical plank R with width w and height ξ is constructed analogously to
an increasing vertical stairway by mirroring the construction of an increasing vertical stairway w.r.t. x-coordinates, see
Figure 2(c).

• An increasing or decreasing horizontal stairway corresponding to a horizontal plank R with width w and height ξ is
constructed analogously to an increasing or decreasing vertical stairway by rotating the whole construction of an increasing
or decreasing vertical stairway by 90◦ around the h-axis, see Figures 6(c)+(e).

• An increasing or decreasing perpendicular stairway corresponding to a perpendicular plank R with width w and height
ξ is constructed analogously to vertical stairway by rotating the whole construction of a increasing or decreasing vertical
stairway by 90◦ around the x-axis, see Figures 6(g)+(i).
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“Increasing” or “decreasing” is the direction of S and “horizontal”, “vertical”, or “perpendicular” is the orientation of S.

By the following lemma, we give an approach how to construct a triple of trains whose forbidden space in their free space
diagram is a stairway of required direction and orientation.

Lemma 8 Let R be a plank with width w and direction d and let Lh, Lx, Ly ∈ R≥0. We can construct three curves Hstair,
Xstair, and Ystair such that the forbidden space of the trains (Hstair, Lh), (Xstair, Lx), and (Ystair, Lh) is a stairway S with
direction d, height no larger than 3

2
Lh, and corresponding to R (except for translations) such that S and R have the same

orientation. The curves Hstair, Xstair, and Ystair have O
(
w
L

)
segments, where L = Lx if R is vertical, L = Ly if R is horizontal,

and L = Lh if R is perpendicular.

Proof. W.l.o.g. we assume that R is an increasing vertical plank. The cases in which R is horizontal or perpendicular and/or
the required direction d of S is decreasing are symmetric.

In Figure 2(d), we illustrate the construction of three trains (Hstair, Lh), (Xstair, Lx), and (Ystair, Ly). In particular,
(Ystair, Ly) is omitted from the illustration because for a vertical stairway we only need intersection points between Hstair

and Xstair. Thus, the following construction works for every curve Ystair that intersects neither Hstair nor Xstair.

The curve Hstair is a segment being separated into three segments by two points a, b ∈ Hstair at which the middle one is
called the needle of Hstair, see Figure 2(d). The segments’ lengths are Lh

2
, Lh

d
, and Lh

2
for an arbitrarily chosen constant d ≥ 2

resulting in Lh + Lh
d

as the length of Hstair. Thus, the height of the resulting stairway will be Lh + Lh
d
≤ 3

2
Lh.

The curve Xstair is the concatenation of three curves. The two end parts of Xstair are segments that are adjacent to a and
b and have a length of Lx

2
. The middle part of Xstair is a zig-zag folding starting and ending in a and b such that the middle

part of Hstair strings the middle part of Xstair like a needle.

We choose the lengths of the segments of the middle part of Xstair between Lx
c

and Lx
2

for an arbitrarily chosen constant
c > 2. This implies that two trains with lengths Lh and Lx collide if the centres of the trains lie on the middle parts of Hstair

and Xstair.

We construct Xstair by combining Θ( w
Lx

) segments of length Θ(Lx). Thus the forbidden space of (Hstair, Lh) and (Xstair, Lx)
is a connected stairway which is made up of Θ( w

Lx
) vertical planks. This concludes the proof. �

Note that the shapes of the four end parts of curves constructed in the proof of Lemma 8 do not have to be segments. In
particular, the only important thing are their lengths.

We use the approach of Lemma 8 to substitute planks from I by stairways without changing the length of shortest path
between s and t.

Lemma 9 We can construct three trains (H,Lh), (X,Lx), and (Y,Ly) such that substituting the union all planks of I(F ) by
the forbidden space of (H,Lh), (X,Lx), and (Y,Ly) does not change the length of a shortest path between s and t. The curves
H, X, and Y are made up of O(m2n2) segments where m and n are the numbers of clauses and variables of F .

Proof. We choose Lh as the height ξ of the planks from I and Lx and Ly as the minimal width 1 of the planks of I.

Consider an arbitrarily chosen path gadget of I. In the following we give an approach how to construct a triple of curves
Hgadget, Xgadget, and Ygadget such that substituting the union of the planks of the given gadget by the forbidden space of
(Hgadget, Lh), (Xgadget, Lx), and (Ygadget, Ly) does not change the length of a shortest path in I. By applying this approach
to all path gadgets, we get a sequence of triples of curves.

Finally, the concatenations of all these subcurves yields the curves H, X, and Y , see Figure 5, such that a shortest path in
the free space diagram of (H,Lh), (X,Lx), and (Y,Ly) has the same length L as a shortest path in I.

First, we give a construction of a tripple (Hsplit, Xsplit, Ysplit) of curves, schedule splitter gadget, corresponding to a path
splitter gadget. Roughly spoken, for each plank of the path splitter gadget, we apply the approach of Lemma 8 resulting in
a stairway for each plank of the path splitte gadget, see Figure 5. This results in three curves Hsplit, Xsplit, and Ysplit, where
the shapes of Xsplit and Ysplit are formed by long zig-zag foldings such that Xsplit lies above Ysplit. The curve Hsplit threads
sequentially parts of the zig-zag folding of Xsplit from above and parts of the zig-zag folding of Ysplit from below like a needle.
The corresponding needles of Hsplit are highlighted by green colors in Figure 5.

Each needle results in a stairway. The order in which Hsplit threads parts of Xsplit and Ysplit is the increasing order of
the corresponding stairways w.r.t. their h-coordinate. The combination of the Properties (P4)-(P8) implies that the curves
Hsplit, Xsplit, and Ysplit can be constructed as the concatenation of O(mn) segments.

The approaches for schedule blocker gadgets, schedule shuffle gadgets, and 3-way schedule splitter gadgets are similar, see
Figure 5.

As I is made up of Θ(mn) path gadgets, we can construct H, X, and Y made up of O(m2n2) segments. This concludes
the proof. �
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B Details on the Hardness Construction for Three Aircrafts

B.1 Definition of the Aircraft Scheduling Problem

In this section, we change our focus from scheduling trains to scheduling aircrafts that are roughly spoken represented by disks
or squares instead of subcurves. A collision between two aircrafts is defined by two intersecting disks or squares that represent
the colliding aircrafts. Note that 3D shapes might also represent safety zones around the aircrafts.

An aircraft is a pair (H,Lh) where Lh ∈ R>0 is the radius of the aircraft and H is the track of the aircraft which is defined
as a curve H : [0, 1]→ R2. We simultaneously denote by H, the function H : [0, 1]→ R2 and its image {p ∈ R2 | there is a t ∈
[0, 1] with p = H(t)}. The length |T | of a track T : [0, 1] → R2 in the ambient space is defined as its length w.r.t. the
Euclidean norm, i.e., |T | :=

∫ 1

0
||T ′(t)||2 dt. An k-fleet is an k-tuple of aircrafts. Two disk-shaped aircrafts (H,Lh) and (X,Lx)

collide for the parameters λh and λx if the disks with midpoints H(λh) and X(λh) and radii Lh and Lx are intersecting each
other. Two square-shaped aircrafts (H,Lh) and (X,Lx) collide for the parameters λh and λx if the squares with midpoints
H(λh) and X(λh) and sidelenghts 2Lh and 2Lx are intersecting each other. A reparametrization of an aircraft (H,Lh) is a
continuous and piecewise linear function α : [0,+∞)→ [0, 1] such that (1) α(0) = 0, (2) there is a minimal value λ ≥ 0 with
α(µ) = 1 for all µ ≥ λ, and (3) the speed of the aircraft is upper-bounded by 1, i.e., for each point in time t ∈ [0,+∞), both
left and right derivative of H ◦α have Euclidean length at most 1. A schedule for a tuple of aircraft ((T1, L1), . . . , (Tk, Lk)) is
a tuple (α1 : [0,+∞)→ [0, 1], . . . , αk : [0,+∞)→ [0, 1]) such that (1) αi is a reparametrization for the aircraft (Ti, Li) for all
i ∈ {1, . . . , k} and (2) the disk-shaped or square shaped aircrafts (Ti, Li) and (Tj , Lj) do not collide for the parameters αi(t)
and αj(t) for all i 6= j ∈ {1, . . . ,m} and t. A timetable for ((T1, L1), . . . , (Tk, Lk)) is a tupple ((D1, A1), . . . , (Dk, Ak)) where
Di and Ai are the required departure and arrival time of the aircraft (Ti, Li) such that 0 ≤ Di ≤ Ai < +∞.

A schedule S = (α1, . . . , αk) for an k-fleet ((T1, L1), . . . , (Tk, Lk)) meets a timetable T = ((D1, A1), . . . , (Dk, Ak)) if
Ti(αi(λ)) = Ti(0) and Ti(αi(µ)) = Ti(1) hold for all λ ∈ [0, Di], µ ≥ Ai, and i ∈ {1, . . . , k}. Furthermore, S meets ap-
proximately T if Ti(αi(λ)) = Ti(0) and Ti(αi(µ)) = Ti(1) hold for all λ ∈ [0, Di], µ ≥ cAi, and i ∈ {1, . . . , k}.

Given a k-fleet F and a corresponding timetable, the Aircraft Scheduling Problem for disk-shaped aircrafts and
square-shaped aircrafts asks if there is a schedule S for F such that S meets the given timetable. A c-approximation for Train
Scheduling Problem is an algorithm that computes a schedule that meets approximately the required timetable.

The parameter space P of an m-fleet ((T1, L1), . . . , (Tk, Lk)) of k is defined as P := Rk
≥0. The forbidden or black space B of

P is the union of all parameter points p = (λ1, . . . , λk) ∈ P such that there are two aircrafts (Ti, Li) and (Tj , Lj) that collide
with the parameters λi and λj . The allowed or white space W is defined as P \ B◦ where B◦ denotes the interior of B. Note
that the white space W is closed.

B.2 The Schedule Gadgets for Squared Aircrafts
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Figure 7: Three curves Hsplit, Xsplit, Ysplit constructing a schedule splitter gadget by stamping out subcurves which
correspond the planks and blocking squares used in the construction of the path splitter gadget. The red subcurves
are the stampers, the gray subcurves are the corresponding synchronizers, and the alternating light and dark gray
shaded areas are the tubes in which the zig-zag folding of Xsplit and Ysplit might have different hights.
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Figure 8: Three curves Hblock ⊂ H, Xblock ⊂ X, and Yblock ⊂ Y constructing a schedule blocker gadget by stamping
out subcurves which correspond the planks used in the construction of the path blocker gadget.
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Figure 9: Three curves Hshuffle, Xshuffle, Yshuffle constructing a schedule shuffle gadget by stamping out subcurves
which correspond the planks and blocking squares used in the construction of the path shuffle gadget. The red
subcurves are the stampers, the gray subcurves are the corresponding synchronizers, and the alternating light and
dark gray shaded areas are the tubes in which the zig-zag folding of Xshuffle and Yshuffle might have different hights.
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Figure 10: Three curves H3−way ⊂ H, X3−way ⊂ X, and Y3−way ⊂ Y constructing a 3-way schedule splitter gadget
by stamping out subcurves which correspond the planks and blocking squares used in the construction of the 3-way
path splitter gadget.
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B.3 Chronological Order of the Schedule Splitter and Blocker Gadgets

Figure 11: Chronological order in which subcurves from Hsplit, Xsplit, and Ysplit are stamped out for the construction
of a path splitter gadget in the free space diagram of Hsplit, Xsplit, and Ysplit.
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Figure 12: Chronological order in which subcurves fromHblock, Xblock, and Yblock are stamped out for the construction
of a path blocker gadget in the free space diagram of Hblock, Xblock, and Yblock.


