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Red-Blue Point Separation for Points on a Circle

Neeldhara Misra*

Abstract

Given a set R of red points and a set B of blue points in
the plane, the Red-Blue point separation problem asks
if there are at most k lines that separate R from B, that
is, each cell induced by the lines of the solution is either
empty or monochromatic (containing points of only one
color). A common variant of the problem is when the
lines are required to be axis-parallel. The problem is
known to be NP-complete for both scenarios [1, 10], and
W(1]-hard parameterized by k in the former setting [5]
and FPT in the latter [8]. We demonstrate a polynomial
time algorithm for the special case when the points lie on
a circle. Further, we also demonstrate the W-hardness
of a related problem in the axis-parallel setting, where
the question is if there are p horizontal and ¢ vertical
lines that separate R from B. The hardness here is
shown in the parameter p.

1 Introduction

Given a set R of red points and a set B of blue points in
the plane, the RED-BLUE SEPARATION (RBS) problem
asks if there are at most k lines that separate R from
B, that is, each cell induced by the lines of the solution
is either empty or monochromatic (containing points of
only one color). Equivalently, R is separated from B
if, for every straight-line segment ¢ with one endpoint
in R and the other one in B, there is at least one line
in the solution that intersects . A common variant of
the problem is when the solution lines are required to
be axis-parallel (APRBS). Questions about the discrete
geometry on red and blue points in general, and their
separability using geometric objects in particular, are
of fundamental interest. This makes RBS a well-studied
problem on its own right. It is also motivated by the
problem of univariate discretization of continuous vari-
ables in the context of machine learning [4, 9].

RBS is known to be NP-complete [10], APX-hard [1],
and W([1]-hard when parameterized by the solution
size [5]. The approximation hardness holds for the
APRBS problem also, while in contrast the parameter-
ized intractability is known only for the general RBS
problem. Specifically, it is known that an algorithm run-
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ning in time f(k)n°*/1°8k) for any computable func-
tion f, would disprove ETH [5]. This reduction cru-
cially relies on selecting lines from a set with a large
number of different slopes — in particular, the number
of distinct slopes of the lines used is not bounded by a
function of k.

For the case where k = 1 and k = 2, the problem is
solvable in O(n) and O(nlogn) time respectively [7].
The problem is known to be FPT parameterized by the
number of blue points (or the number of red points). A
2-approximation algorithm is also known for APRBS [1]
by casting the separation problem as a special case of
the rectangle stabbing problem'. We note that the
2-approximation algorithm and APX-hardness applies
even to the separation of monochromatic point sets
(where the goal is to separate all points from each other)
and this problem is also known to admit a approxima-
tion (OPT log OPT)-approximation [6].

Our Contributions We first address a question raised
in the discussions from [1]: Do special cases admit bet-
ter approximation ratios or even exact solutions? We
make partial progress on this question by answering it
in the affirmative when the input points lie on a circle
(which would be a special case” of points in convex po-
sition). In particular, we show that when points lie on
a circle, both RBS and APRBS admit exact polynomial-
time algorithms. Interestingly, the RBS problem is sig-
nificantly simpler in this special case compared to its
axis-parallel counterpart. For the latter, the size of the
optimal solution is captured by a structural parameter
of a graph that is naturally associated with the point
set. Our proof is algorithmic and can be used to solve
the associated computational question.

Further, we introduce a natural variant of APRBS,
which is the (p, ¢)-APRBS problem. Here, as before, we
are given a set of red and blue points, and the question
is if there is a set of at most p horizontal lines and at
most ¢ vertical lines that separate R from B. We show
that this problem is W[2]-hard when parameterized by
p alone. Finally, we also show by a simple observation

IThis is based on the idea that lines separating R from B must
stab all rectangles formed by red and blue points at the corners.

2We speculate that these ideas would also be relevant for the
more general scenario of points in convex position. While the
algorithm for RBS in fact works as-is for points in convex position,
the details for the axis-parallel variant are less obvious.
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that the 20UBD algorithm for APRBS from [5] can be
improved to 20(klog|Bl),

The rest of the paper is organized as follows. We for-
mally define the problems that we address in Section 2
and focus on the case of points on a circle in Section 3 for
both RBS and APRBS. We describe the W[2]-hardness
result for (p, ¢)-APRBS parameterized by p in Section 4.
Due to lack of space, we make our remarks about the
improved algorithm in the full version of the paper [11].

2 Preliminaries

For positive integers x, y, let [x] be the set of integers
between 1 and z, and [z, y] the set of integers between
x and y. Given a set of points R U B in the plane, R
is said to be separated from B by a collection of lines
L if every straight-line segment with one endpoint in R
and the other one in B is intersected by at least one line
in L. We adopt the convention of requiring a “strict”
separation, which is to say that no point in R U B is
on a separating line. We let n := |[RU B|, r = |R| and
b = |B|. The computational problems that we study are
the following.

RED-BLUE SEPARATION. (RBS) Given a set R of red
points and a set B of blue points in the plane and a
positive integer k£ as input, determine if there exists a
set of at most k lines that separate R from B.

AXIS-PARALLEL RED-BLUE SEPARATION. (APRBS)
Given a set R of red points and a set B of blue points in
the plane and a positive integer k as input, determine
if there exists a set of at most &k axis-parallel lines that
separate R from B.

(p,q)-AXIS-PARALLEL RED-BLUE SEPARATION.
((p,q)-APRBS) Given a set R of red points and a set B
of blue points in the plane and positive integers p and
q as input, determine if there exists a set of at most p
horizontal and ¢ vertical lines that separate R from B.

3 Points on a Circle

In this section, we focus on the special case when all the
points lie on a circle C. Let P = (RU B) denote a set of
n points on a circle, with r red points and b blue points.
As usual, R (respectively, B) denotes the set of red (re-
spectively, blue) points. Without loss of generality, we
assume that all points of P lie on an unit circle centered
at the origin. Fix an order o on RU B based on the or-
der of their appearance on the circle, starting at (1,0)
and moving around the circle counterclockwise. We let
r; and b; denote the i*" red and the j" blue point that
we encounter in this order. For a point p on the circle,
we let col(p) denote the color of the point p.

We call a maximal sequence of monochromatic points in
o a chunk. Let Cp denote the set of chunks of P. In the
order of their appearance on the circle, we denote the
individual chunks by C4,...,Cy. The color of a chunk
is the color of any point belonging to it. We refer to
a chunk consisting of red (blue) points as a red (blue)
chunk. We overload notation and let col : Cp — {R, B}
be a function that returns the color of a chunk. The
arc of C starting at the last point on the r** chunk and
the first point on the (r + 1) chunk is called a switch.
Let Sp denote the set of switches of P. Note that any
instance with w chunks has w switches. We denote the
switches by S, ..., S, in the order of their appearance
on the circle. Also note that w must always be even,
w

and that there are 5 red chunks and % blue chunks.

We say that a switch S is stabbed by a line £ if NS # ().
We first make the following observation.

Proposition 3.1 Let P = (RU B) be a red-blue point
set on a circle. If L is a set of lines that separates R
from B, then every switch must be stabbed by some line

i L.

Proof. Suppose that there exist a switch S; € Sp that
is not stabbed by any line from the set L. Note that
S; separates the chunks C; and C;y;. Without loss of
generality, suppose col(C;)= R and col(Cj;+1)=DB. Since
S; is not stabbed by any line from L, the last point of
C; and first point of C;11 are not separated, which leads
to the contradiction of the fact that L separates R from
B. Therefore, every switch must be stabbed by some

line in L. O
Based on Proposition 3.1, we have that in an instance
with w switches, % is a lower bound on the optimum,

since any line can stab at most two chunks. In the next
subsection, we show that this can always be achieved
by a set of general lines. For axis-parallel lines, we
strengthen the lower bound further using an auxiliary
graph structure on the switches, and demonstrate an al-
gorithmic argument to match the stronger lower bound.

3.1 The Case of General Lines

With arbitrary lines, our strategy is simple: we “pro-
tect” each monochromatic chunk of a fixed color with
a single line passing through it’s adjacent switches. In
particular, consider any chunk C; such that col(C;) = B.
Fix an arbitrary point p; in the switch® S;_; and an-
other point g; in the switch S;. Let £; be the line passing
through p; and ¢; and let L := {¢; | col(C;) = B}. In
other words, L is the set of lines thus defined based on
blue chunks. Note that there are 3 lines in this solu-
tion, since we introduce one line for each blue chunk.
Moreover, it is also easy to check that these lines sep-

31f 4 = 1, then we let S_1 := Sy.
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arate R from B, since every blue chunk belongs to a
separate cell of this configuration.

3.2 The Case of Axis-Parallel Lines

When we are restricted to axis-parallel lines in the so-
lution, then the strategy described in the previous sub-
section would fail since the lines that are described need
not be axis-parallel. A similar strategy does give us a
simple 2-approximation, which we describe informally.
Observe that each monochromatic chunk can be pro-
tected by a “wedge” consisting of a pair of axis-parallel
lines. Indeed, consider the points p; and ¢; defined as
before, and let T' be the unique rectangle whose sides
are axis-parallel and which has p; and ¢; as diagonally
opposite corner points. Clearly, one of the other two cor-
ner points c lies inside C. We can now choose the two
axis-parallel lines that contain the edges of the rectangle
which intersect at ¢, and we have a wedge-like structure
that protects the chunk (depending on the length of the
chunk, note that the points of the chunk may be dis-
tributed over multiple cells). This gives us a solution
with w lines, and is therefore a two-approximate solu-
tion.

We now demonstrate a stronger lower bound for the
setting of axis-parallel lines. To this end, we introduce
some terminology and define an auxiliary graph based
on the point set P. We say that a pair of switches face
each other if there exists a horizontal or vertical line
that stab both of them. A switch which faces at least
one other switch is said to be mice, a pair of switches
facing each other is called a nice pair, and a switch that
is not nice is said to be isolated. We define a graph based
on P that has a vertex for every switch, and an edge
between every pair of vertices corresponding to switches
that are nice pairs. Formally, for a red-blue point set
P = (R U B) with w switches S,..., Sy, we define the
graph Gp = (Vp, Ep) as follows: Vp = {v; | 1 < j <
w} and Ep = {(v;,v;) | (S;,S;) is a nice pair}.

Observe that every isolated switch of P corresponds to
an isolated vertex of Gp. Recall that an edge cover of
a graph G is a set of edges such that every vertex of
the graph is incident to at least one edge of the set.
Note that a minimum-sized edge cover can be found by
greedily extending a maximum matching of a graph G.
We use the abbrevation MEC to refer to a minimum
edge cover. Let Ip C Vp be the set of isolated vertices
of Gp and let Hp := Gp \ Ip. We define k(Gp) :=
|Ip| + MEC(Hp), where MEC(G) denotes the size of a
minimum edge cover of the graph G. Our first claim is
that any instance P = (R U B) of APRBS requires at
least k(G p) lines to separate R from B. Next, we will
show that this bound is tight.

Before stating the claims formally, we make some re-

marks about the bound. Note that this coincides with
the bound obtained as a consequence of Proposition 3.1
when Gp has a perfect matching. Further, the bound is
w when Gp is the empty graph, or equivalently, when
every switch is an isolated switch. In this scenario, note
that the approach described for the two-approximate so-
lution will, in fact, yield an optimal solution. The intu-
ition for the bound in the generic case is the association
between lines and edges in a MEC: indeed, every edge e
in Gp corresponds to a family of lines that stab switches
corresponding to the endpoints of e. Our goal is to show
that we can pick one line corresponding to each edge in
the MEC and one line for each isolated switch in such
a way that we separate R from B. However, it is easy
to come up with examples where this does not happen,
and indeed, the argument for the upper bound follows
by making a bounded number of modifications to the
set of lines that was proposed with guidance from the
MEC. On the other hand, this association runs both
ways, so we can recover subset of edges from any col-
lection of lines separating R from B, using that stab
two switches. If a solution uses fewer than x(Gp) lines,
the hope is that the edges recovered lead us to an edge
cover that has fewer edges than the MEC, which would
be a contradiction. We now formalize both sides of this
argument. We begin with the lower bound.

Lemma 3.1 Let P = (RU B) be a red-blue point set
on a circle. Let L be a set of k axis-parallel lines that
separate R from B. Then k > k(Gp).

Proof. Consider any solution L that uses k axis-
parallel lines. By Proposition 3.1, we know that ev-
ery switch must be stabbed by some line from L. In
particular, suppose there are « lines in L that stab a
pair of (nice) switches, and § lines that stab one switch.
Clearly, 8 > |Ip|, the number of isolated vertices in G p.

Let X be the set of non-isolated vertices in GGp which
are not covered by the edges corresponding to the a
lines stabbing pairs of nice switches. Now, note that the
switches corresponding to these non-isolated vertices in
X must be stabbed by one of the g lines. So, § >
|X| + |Ip|. Recall that Hp = Gp \ Ip and MEC(Hp)
covers every non-isolated vertex of Gp. Observe that
MEC(Hp) < a + |X|, since the edges corresponding to
the «a lines stabbing pairs of switches can be extended by
a collection of | X| edges, one each for each non-isolated
vertex that is not accounted for so far, to obtain a MEC
for Hp. Adding both the inequalities above, we get:

a+p+[X[ > [X]+[Ip] + MEC(Hp)
= a+ > |Ip| + MEC(Hp); = k > x(Gp),

as desired. O

We now turn to the upper bound. In this section, we
state some claims without proofs due to lack of space
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and refer the reader to the full version of the paper for
the detailed arguments.

Lemma 3.2 Let P = (RU B) be a red-blue point set
on a circle. There exists a collection of at most k(Gp)
lines that separate R from B.

The proof of the upper bound is algorithmic, and we
demonstrate it with a series of claims. To begin with,
let Fp C Ep be a MEC of Hp and let t := |Ip]|.
We define a set of lines Lj as follows. For every edge
e = (v;,vj) € Fp, let £. be an arbitrary axis-parallel
line passing through the switches S; and S;. For every
isolated switch S;., let £, be an arbitrary axis-parallel
line stabbing S,.. Now define Ly as the collection of all
of these lines, i.e:

LOZ{KS‘GEFP}U{ZT"UTEIP}.

Note that |Lo| = k(Gp). If Ly separates R from B, then
we are done. Otherwise, we will obtain another set of
axis-parallel lines that “dominates” L in that it has the
same size as Lg, separates all pairs of points separated
by Lo and at least one additional pair. To formalize
this, we introduce the notion of a strictly dominating
solution. For a set of lines L, let sep(L) C R x B denote
the set of red-blue point pairs that are separated by L.
Given two collections of axis-parallel lines L and L*,
we say that L* strictly dominates L if |L*| < |L| and
sep(L) C sep(L*). We will now show that there exists a
sequence of sets of axis-parallel lines Lo, L1, ..., Ly such
that L; strictly dominates L; 1 for all 1 < i < g and
L, separates IR from B. Note that the number of steps
is bounded by rb. Throughout, we will maintain the
invariant that every switch is stabbed by at least one
line. Note that this is true, in particular, for L.

Claim 3.1 FEwvery switch is stabbed by at least one line
from Ly.

For a collection of axis-parallel lines L, we say that a
cell of L is corrupt if it is non-monochromatic, that is,
if it contains at least one red point and at least one
blue point. Note that Ly contains at least one corrupt
cell, otherwise we would be done. We consider all the
possible ways in which a cell can intersect the circle
underlying our point set.

Claim 3.2 Let R be an axis-parallel rectangle and let
C be a circle centered at the origin. Then RNC' is either
empty or consists of at most four disjoint arcs of C.

Next, we note that any corrupt cell must contain at least
two disjoint arcs of the circle.

Claim 3.3 Let L be a set of lines that stabs every
switch at least once, and let R be a corrupt cell of L.
Then R N C' contains at least two disjoint arcs of the
circle C.

We say that a cell R is large if R N C' contains three or
four disjoint arcs of C. We note that any instance can
have at most one large cell.

We are now ready to describe the high-level strategy for
obtaining a sequence of strictly dominating solutions. It
turns out that if a corrupt cell consists of exactly two
disjoint arcs, then depending on the “location” of the
cell, there is a simple strategy that allows us to clean up
the cell by flipping the orientation of one of the lines in
the solution. In particular, and informally speaking, the
strategy works for corrupt cells that are “above” (“be-
low”) the origin if all cells above it are monochromatic,
or corrupt cells “to the left” (“to the right”) the origin if
all cells before (after) it are monochromatic. This gives
us a natural sweeping strategy to clean up corrupt cells
from four directions, while potentially getting stuck at
a large cell “at the center”. When the large cell is the
only corrupt one, it turns out that there are a fixed
number of configurations it can have when considered
along with its surrounding cells, and for each of these
cases, we suggest an explicit strategy to clean up the
large cell to arrive at a solution with no corrupt cells at
all. We now formalize this argument.

Let L denote the current solution: to begin with, L
is Lo, and we describe a process to obtain a solution
L’ that strictly dominates L if L is not already a valid
solution. Note that L divides the plane into vertical
and horizontal strips, which we will refer to as the rows
and columns of the solution. Also, we call a cell of this
configuration empty if it does not contain any points of
P. We first focus on corrupt cells that are mot large.
Consider a cell R whose intersection with C' consists of
exactly two disjoint arcs, say A; and As. Note that A
and A, lie in distinct quadrants. We call R a horizontal
cell if these arcs lie in the first and second or the third
and fourth quadrants; and we call R a vertical cell if
these arcs lie in the first and fourth or the second and
third quadrants. Note that the remaining possibilities
do not arise with cells that are not large. We refer the
reader to Figure 1 in the full version of the paper for a
visual representation of these cases.

Consider the corrupt horizontal cell whose center has
the largest y-coordinate in absolute value. This is either
the top-most corrupt cell above the z-axis (Case 1) or
the bottom-most corrupt cell below the z-axis (Case 2).
If there are no corrupt horizontal cells, then consider
the corrupt vertical cell whose center has the largest
x-coordinate in absolute value. This is either the left-
most corrupt cell to the left of the y-axis (Case 3) or the
right-most corrupt cell to the right of the y-axis (Case
4).

Let us consider Case 1. Here, observe that any row
above the row containing the cell R consists of at most
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one non-empty cell and that all such cells are monochro-
matic by the choice of R. Now, if the cell above R
is monochromatic red and the arc in the first (second)
quadrant consists of red points, then the top line of R
can be flipped to a vertical line about the top-left (top-
right) corner of the cell R. It is easy to check that this
solution strictly dominates L. The case when the cell
above R is monochromatic blue can be argued similarly.
We refer the reader to Figure 2 in the full version of the
paper for an illustration of the switching strategies in
these scenarios.

Case 2 is similar to Case 1 except that we argue relative
to the cells below R rather than above it. In Cases 3 and
4, we flip vertical lines to a horizontal orientation, and
the argument is based on monochromatic cells that lie to
the left and right of R, respectively. All the details are
analogous to the case that we have discussed. Therefore,
as long as the current solution has a corrupt cell that
is not large, this discussion enables us to find a strictly
dominating solution.

Now, the only case that remains is the situation where
we have exactly one corrupt cell which is large. For a
large cell we have four surrounding monochromatic or
empty cells. The three or four arcs contained inside the
large cell may also have red or blue points in different
configurations. It turns out that each of these cases
admits a new solution which makes all cells monochro-
matic. This can be established by inspection, and we
refer the interested reader to the supplementary mate-
rial that goes over all the individual cases®. Meanwhile,
we refer the reader to Figure 3 in the full version of
the paper for a stereotypical case and the correspond-
ing strategy. Based on this discussion, we conclude with
the formal statement of the main result of this section.

Theorem 3.1 RBS and APRBS can be solved in poly-

nomial time when the input points lie on a circle.

4 W-hardness of (p,q)-Separation

In this section, we focus on the (p, q)-APRBS problem.
Before describing our result, we briefly comment on
the relationship between this problem parameterized by
only the budget for horizontal lines (or vertical lines, by
symmetry) and APRBS parameterized by the size of the
entire solution. If APRBS had turned out to be W[1]-
hard or W[2]-hard parameterized by k, then it would im-
ply that (p, ¢)-APRBS is unlikely to be FPT parameter-
ized by either p or ¢, since such an algorithm can be used
as a black box to resolve the former question with only
a polynomial overhead (guess p, g such that p + ¢ = k).
On the other hand, if (p, ¢)-APRBS turns out to be FPT
parameterized by either p or ¢, then this would imply

4Please see the full version of this work for more details [11].

that APRBS is also FPT for the same reason. We show
that (p, q)-APRBS is W[2]-hard when parameterized by
p, the number of horizontal lines used in the solution.
Therefore, our observation here establishes the hardness
of the problem for a smaller parameter, and it does not
have any direct implications for APRBS. Our result is
also not implied by what is known about APRBS, since
it turns out that the problem is FPT parameterized by
k.

We reduce from the COLORFUL RED-BLUE DOMINAT-
ING SET (C-RBDS) problem, which is defined as follows.
The input is a bipartite graph G = (R, B, E(G)) along
with a partition of R into k parts Ry W --- W Rg. The
question is if there exists a subset S C R such that
|[R;NS| =1for all 1 <i < k and that dominates ev-
ery vertex in B; in other words, for all v € B, there
exists a u € S such that (u,v) € E(G). Such a set is
called a colorful red-blue dominating set for the graph
G. This problem is well-known to be W[2]-hard when
parameterized by k [2]. Our reduction is inspired by
the reduction from SAT used to show the hardness of
the problem of separating n points from each other [1].
One aspect that is specific to our setting is ensuring that
the budget for lines in one orientation is controlled as a
function of the parameter.

Theorem 4.1 (p, q)-APRBS is W/[2]-hard when param-
eterized by p.

Proof. Let G = (R = Ry W---W Ry, B); k) be an in-
stance of C-RBDS. Without loss of generality, we as-
sume that every vertex v € B has the same degree
d and that d is even’. We may also assume that all
R;’s have the same number of vertices (padding R;
with max¥_, {|R;|} — |R;| dummy isolated vertices if re-
quired). We let |Ry| = -+ = |Ri| = m and n := |B|.
We also assume that k is even, again without loss of
generality. Finally, we impose an arbitrary but fixed or-
dering on each R; and on the sets N(v) (neighbours of
v in G) for every v € B.

It will be convenient to think of the point set of the
reduced instance as lying within a sufficiently large
bounding box, say B. To describe the placement of
the points, we impose an uniform (k 4+ 2) x (n + 1)
grid on B, which divides B into k£ + 2 horizontal regions
Hy, Hy,...,Hy, Hiy1 (labeled from bottom to top) and
(n+ 1) vertical regions Vp, V1, ..., V,, (labeled from left
to right) which we call tracks. Each horizontal track H;
for i € [k] is divided further into m + 2 horizontal strips

5When this is not the case, let A := max,cp{d(v)}. We may
introduce an additional “dummy color” class Rg with a forced
dummy vertex (for example, by adding a d-star whose center is
in B and whose leaves are in Rgp), and for every vertex v € B we
may introduce A — d(v) new pendant red neighbors of v in Rp.
If d happens to be odd, use A + 1 in this process instead of A to
ensure that d is even.
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and each vertical track V; for j € [n] is divided further
into 2d vertical strips. Within a horizontal track, the
first and last horizontal strips are called buffer zones.
Further, when we refer to the p** horizontal strip within
any horizontal track, the buffer zones are not counted.
We refer the reader to Figure 4 in the full version of
this paper for a visual representation of the reduced in-
stance.

For i € [k], j € [n], a € [m], and 8 € [2d], we refer to
the intersection of the a!” horizonal strip in H; and the
Bt vertical strip in V; as Z;;[a, 8. We note that two
points that share the same z-coordinate (y-coordinate)
have to be separated by a vertical (horizontal) line. We
now describe three sets of points that we need to add:
the first will lead us to a choice of a vertex from each
R;, the second set encodes the structure of the graph,
and the third set ensures that the chosen set is indeed
a dominating set by forcing the use of a budget in a
certain way.

Selectors. Consider the first vertical track. Here, for
any even (odd) i € [k], we add a red (blue) point to the
top buffer zone and a blue (red) point to the bottom
buffer zone of the i*" track. These 2k points are called
the selectors. We ensure that all selectors have the same
x-coordinate. Intuitively, the selector points ensure that
any valid solution is required to use at least one horizon-
tal line drawn in each of the k£ horizontal tracks — and
the budget will eventually ensure that any valid solution
uses exactly one. Which horizontal strip these lines end
up in will act as a signal for our choice of vertices in the
dominating set in the reverse direction.

Functional Points. Next, consider any vertex v; € B.
For every uw € N(B), we add a pair of red and blue
points in Z;;[e, 2] if u is the a!” vertex of R; and is
the B neighbor of v;. These points are added to the
bottom-left and top-right corners of the box. If § is odd
(even)”, then the bottom-left corner gets a blue (red)
point and the opposite corner gets the red (blue) point.
These pairs of points will be referred to as the functional
pairs. The functional pairs encode the structure of the
graph, and we would like to ensure that the responsi-
bility of separating at least one functional pair in each
vertical track falls on a horizontal line used to separate
the selectors. We force this by choosing an appropri-
ately small budget for vertical lines, which ensures that
not all separations can be accounted for using vertical
lines. However, we still need to control how the vertical
budget is utilized across different tracks. To this end,
we introduce a special gadget that forces the use of a
certain number of vertical lines in each vertical track.

6The organization of colors based on the parity of the columns
in the case of functional pairs and rows in the case of selectors
is to ensure that there are no additional separation requirements
other than the ones that we desire to encode.

Guards. In the horizontal track Hy, we place d points,
all with the same choice of y-coordinate which is ar-
bitrary but fixed. Within the j** vertical track, a-
coordinate of the s point is chosen so that the point
lies in the middle of the (2s)*" vertical strip of V;. The
color of the first vertex in the track V; is blue if ¢ is odd
and red if 7 is even. This ensures that for 2 < i < n, the
first point in the i*" track has the same color as the last
point of the (i —1)*" track. The colors of the remaining
points are chosen so that consecutive points within the
same track have distinct colors. Equivalently, the st*
guard vertex in the i*" track is blue (red) if s and i are
both odd (even), and is red (blue) if s is odd (even) and
i is even (odd). We refer to these points as guards.

We briefly discuss the role of the guard vertices: we note
that the guards can be separated from each other by
(d—1) vertical lines, and since all guards have the same
y-coordinate, this is the only way to separate them.
However, there is no set of (d — 1) lines that can sep-
arate all the guards and all the associated functional
pairs in any vertical track. The budget for the vertical
lines will be such that we can only afford to separate the
guards as we are required to do, and we will be forced
to separate at least one functional pair using a horizon-
tal line, which will essentially ensure that the selectors
have chosen vertices corresponding to a dominating set.

We let p:= k+ 2 and ¢ := (d — 1)n + 1. This mostly
completes the description of the construction. Due to
lack of space, we defer the argument for equivalence and
some minor details in the construction to the full version
of the paper [11]. O

5 Concluding Remarks

We showed that RBS and APRBS are polynomial-time
solvable when points lie on a circle. Further, we intro-
duced a natural variant that separates out the budget
for horizontal and vertical lines in the axis-parallel vari-
ant, and demonstrated that (p,q)-APRBS is W[2]-hard
when parameterized by p. We expect a natural adap-
tation of these arguments to work for points in convex
position as well. In the general setting, since APRBS
is FPT when parameterized by k [8], the question of
whether the problem admits a polynomial kernel would
be natural to explore further. Our W[1]-hardness reduc-
tion for (p, q)-APRBS may provide some starting points
towards an answer in the negative — in its present form
the parameter k of the reduced instance depends on
k,d, and n. APRBS would not admit a polynomial ker-
nel (under standard complexity-theoretic assumptions)
if this dependence can be reduced to k and n only [3].
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