
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Nets of higher-dimensional cubes
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Abstract

In this extended abstract, we show that every ridge un-
folding of an n-cube is without self-overlap, yielding a
valid net. The results are obtained by developing ma-
chinery that translates cube unfolding into combinato-
rial frameworks. The bounding boxes of these cube nets
are also explored using integer partitions.

1 Introduction

The study of unfolding polyhedra was popularized by
Albrecht Dürer in the early 16th century in his influ-
ential book The Painter’s Manual. It contains the first
recorded examples of polyhedral nets, connected edge
unfoldings of polyhedra that lay flat on the plane with-
out overlap. Motivated by this, Shephard [6] conjectures
that every convex polyhedron can be cut along certain
edges and admits a net. This claim remains tantaliz-
ingly open.

We consider this question for higher-dimensional con-
vex polytopes. The codimension-one faces of a polytope
are facets and its codimension-two faces are ridges. The
analog of an edge unfolding of polyhedron is the ridge
unfolding of an n-dimensional polytope: the process of
cutting the polytope along a collection of its ridges so
that the resulting (connected) arrangement of its facets
develops isometrically into an Rn−1 hyperplane.

There is a rich history of higher-dimensional unfold-
ings of polytopes, with the collected works of Alexan-
drov [1] serving as seminal reading. In 1984, Turney [7]
enumerates the 261 ridge unfoldings of the 4-cube, and
in 1998, Buekenhout and Parker [2] extend this enumer-
ation to the other five regular convex 4-polytopes. Both
of these works focus on enumerative rather than geo-
metric unfolding results. Miller and Pak [4] construct
an algorithm which provides an unfolding of polytopes
without overlap. However, their method allows cuts in-
terior to facets, not just along ridges.

Our work targets ridge unfoldings of the n-cube. For
the 3-cube, Figure 1 shows the 11 different unfoldings
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(up to symmetry), all of which yield nets. Section 2 gen-
eralizes this into our main result: every ridge unfolding
of the n-cube results in a net. Section 3 considers pack-
ing these cube nets into boxes using integer partitions.
Finally, we form a conjecture concerning regular convex
polytopes in Section 4.

Figure 1: The 11 edge unfoldings of the 3-cube.

2 Rolling and Unfolding

We explore ridge unfoldings of a convex polytope P by
focusing on the combinatorics of the arrangement of its
facets in the unfolding. In particular, a ridge unfolding
induces a tree whose nodes are the facets of the polytope
and whose edges are the uncut ridges between the facets
[5]. Indeed, this is a spanning tree in the 1-skeleton of
the dual of P .

The dual of the n-cube is the n-orthoplex, whose 1-
skeleton forms the n-Roberts graph. The 2n nodes of
this graph (corresponding to the 2n facets of the n-cube)
can arranged on a circle so that antipodal nodes repre-
sent opposite facets of the cube. Thus, unfoldings of
an n-cube are in bijection with spanning trees of the
n-Roberts graph.

Example 1 Figure 2(a) considers an edge unfolding of
the 3-cube with its underlying dual tree. This appears as
a spanning tree on the 1-skeleton of the octahedral dual
(b), redrawn on the 3-Roberts graph (c).
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Figure 2: An unfolding of a 3-cube with its correspond-
ing spanning tree on the 3-Roberts graph.
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Recall that a ridge unfolding of an n-cube is a con-
nected arrangement of its 2n facets, developed isomet-
rically into hyperplane Rn−1. Begin the unfolding by
choosing a (base) facet b of the n-cube, placing it on
the hyperplane. Then the normal vector nb to b be-
comes normal to the hyperplane. Consider an adjacent
facet c to b, and roll the cube along the ridge between
these facets, with facet c now landing on the hyper-
plane. Figure 3 shows a rendering of the orthogonal
projection of such a roll, with c∗ and b∗ corresponding
to the antipodal facets of c and b, and the marked red
edge representing the ridge between c and b.
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Figure 3: Rolling a cube on a hyperplane.

Since we rotate only along the plane spanned by the
normal vectors nb and nc, the remaining directions stay
fixed in the development. This is captured combinato-
rially as a rotation of a subgraph of the Roberts graph:

Definition 1 A roll from base facet b towards an ad-
jacent facet c rotates the four nodes {b, c, b∗, c∗} of the
Roberts graph along the quadrilateral (keeping the re-
maining nodes fixed), making c the new base facet.

Figure 4 shows an example for the 5-cube, where the
highlighted quadrilateral (depicting the roll) is invoking
the colored square of Figure 3.
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Figure 4: Rotating facet 1 towards 3∗ on a 5-cube.

The advantage of unfolding a cube (compared to an
arbitrary convex polytope) into hyperplane Rn−1 is that
its (n−1)-cube facets naturally tile this hyperplane. We
exploit this by recasting the unfolding in the language
of lattices. Without loss of generality, we can situate
a ridge unfolding of the n-cube so that the centroid of
each facet occupies a point of the integer lattice Zn−1

of Rn−1. To see the lattice structure manifest in the
n-Roberts graph, we imbue the latter with a coordi-
nate system: arbitrarily label the 2n − 2 edges of the

n-Roberts graph incident to the base node with the di-
rections

{x1,−x1, x2,−x2, . . . , xn−1,−xn−1} ,

where edges incident to antipodal nodes get opposite
directions.1 Figure 5 shows examples of coordinate sys-
tems for the 3D, 4D, and 5D cases.
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Figure 5: Coordinate systems for 3D, 4D, and 5D cubes.

These n− 1 directions are mapped to the axes of the
Rn−1 hyperplane into which the n-cube unfolds. In par-
ticular, the 2n − 2 ridges of the n-cube incident to the
base facet are in bijection with these coordinate direc-
tions, with opposite directions corresponding to parallel
ridges of the facet. The roll keeps track of the combina-
torics, whereas the coordinate system shows the direc-
tion of unfolding in the lattice. This is made precise:

Lemma 1 Let T be a spanning tree of the n-Roberts
graph with a coordinate system. The unfolding of the
n-cube along T into Rn−1 can be obtained by mapping
T to the lattice Zn−1 through a sequence of rolls.

Proof. Choose some base facet b of T and map it to
some point pb ∈ Zn−1. Let node c be adjacent to b
along T with associated direction x from the coordinate
system. The roll from b towards c maps node c to the
point in Zn−1 that is adjacent to pb in direction x. The
four facet labels {b, c, b∗, c∗} permute with the roll of
the cube whereas the coordinate system directions are
always anchored to the base facet. In particular, after
the roll, facet b∗ lies in the x direction with respect to
the new base facet c, since the plane spanned by normal
vectors nb and nc was rotated.

Given any node t of T , traverse the path between
b and t through a series of rolls as described above;
this maps all the nodes of T into Zn−1. To obtain the
unfolding of the n-cube, simply replace each mapped
point of the lattice with an (n− 1)-cube. �

Example 2 Figure 6 shows an unfolding of the 3-cube
along a spanning path using Lemma 1. At each itera-
tion, there is a roll of the Roberts graph and a direction
of unfolding based on the given coordinate system. The
unfolded facets are colored white, and the unfolded ridges

1The isometry group of the cube acts simply transitively on
these labelings. Thus, without loss of generality, we can choose a
counterclockwise labeling of the edges in cyclic order.
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become dashed-lines. Figure 7 showcases a 3-cube un-
folding along a spanning tree. Given any two nodes of
this tree, we unfold along the path between these nodes
by rolls using Lemma 1. Figure 8 provides an example
of an unfolding of the 4-cube along a spanning path.
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Figure 6: Unfolding a 3-cube along a spanning path.

Lemma 2 Let T be a spanning tree of the n-Roberts
graph with a coordinate system. If direction x is used
in the unfolding along some path of T , direction −x will
not be used in the unfolding along this path.

Proof. Assume we roll along a path in the x direction,
moving the current base facet b into the −x direction.
Since b has now been visited, it cannot be used again in
the unfolding. Thus, the only way a roll along direction
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Figure 7: Unfolding a 3-cube along a spanning tree.

−x can occur is if b is rotated out of that direction. How-
ever, the only moves that can displace b are rolls along
the x and −x directions. The latter is not possible and
the former simply replaces b with another visited facet,
continuing to obstruct motion in the −x direction. �

Example 3 Figure 6(ab) shows an example where the
first roll is in direction x1, moving facet 1 into the −x1

position, and facet 3∗ into the base position. Since facet
1 has been visited, rolling in direction −x1 is restricted.
Another roll in Figure 6(bc) displaces 1 but simply re-
places it with facet 3∗, which has now been visited.

Theorem 3 Every ridge unfolding of an n-cube yields
a net.

Proof. Consider an unfolding of the n-cube, given by a
spanning tree T on the n-Roberts graph. By Lemma 2,
antipodal directions will never appear in unfolding of
paths. Thus, as the combinatorial distance between any
two nodes of a path along the spanning tree T increases,
the Euclidean distance of their respective facets in the
hyperplane Rn−1 (under the mapping to the integer lat-
tice from Lemma 1) strictly increases. Since the facets
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Figure 8: Unfolding a 4-cube along a spanning path.

in the unfolding along any path of T do not overlap, the
unfolding of the entire tree T results in a net. �

3 Packings and Partitions

Having unfolded cubes into their nets, we now turn to
packing these nets into boxes. A box (or orthotope) is
the Cartesian product of intervals, and the bounding box
of a net is the smallest box containing the net, with box
sides parallel to the ridges of the net.

Definition 2 An n-cube partition is an integer parti-
tion of 3n − 2 into n − 1 parts, where each part is at
least two.

4 . 4 . 25 . 3 . 2 4 . 3 . 36 . 2 . 2

Figure 9: Spanning trees and bounding boxes.

Example 4 Figure 9 displays four spanning trees of the
4-cube and their corresponding nets in bounding boxes.
Notice that the dimensions of each bounding box form a
4-cube partition. In particular, these are all the possible
4-cube partitions. Theorem 4 below claims that all 261
nets of the 4-cube must fit into one of these four boxes.

Theorem 4 For every net of an n-cube, the dimen-
sions of its bounding box is an n-cube partition.

Proof. Each net of the n-cube has 2n facets that need
to be unfolded in Rn−1. Since each facet is an (n− 1)-
cube, the placement of the first facet in the unfolding
contributes n−1 to the bounding box number of the net,
one for each of its n−1 dimensions. We show that each
of the remaining 2n−1 facets of the unfolding increases
the bounding box number by exactly 1, resulting in a
total box number of 1 · (n− 1) + (2n− 1) · 1 = 3n− 2.

Suppose (by contradiction) that in the unfolding, the
roll from facet b to adjacent facet c in direction x does
not increase the bounding box number of the current
net. Assume the ridge between b and c is supported
by some hyperplane H of Rn−1. Since the box number
did not increase, there must be another facet (call it
d) in the current unfolding that lies on the same side
of hyperplane H as c. Thus, the unfolding of the path
between facets c and d must have crossed H at least
twice, moving along x in both the positive and negative
directions, contradicting Lemma 2.
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Figure 10: Rolls on the Roberts graphs reinterpreted as a token sliding game.

Finally, it needs to be shown that our cube will roll
in all n−1 unfolding dimensions (satisfying the require-
ment that each part of a cube partition is a least two).
But the cube net is a spanning tree of the Roberts graph,
with the unfolding forced to visit all the nodes. And
such visits can only be accomplished by rolling along
each of the n− 1 distinct directions. �

The converse of Theorem 4 also holds: given an in-
teger partition of 3n − 2 into n − 1 parts, there exists
an unfolding of an n-cube whose bounding box dimen-
sions match the partition. The remainder of this section
is devoted to proving this result. As discussed earlier,
the placement of the first facet in the unfolding of the
n-cube contributes n− 1 to the bounding box number.
Thus, the cube partition can be reinterpreted as an in-
teger partition of 2n−1 (the remaining facets) into n−1
parts (the possible directions), with each part at least
one. For such a partition, our task is to find a sequence
of rolls along the n−1 directions so that the 2n−1 facets
are unfolded into their respective partitioned directions.
Without loss of generality, we consider rolls only in the
positive directions.

In order to construct cube unfoldings for such parti-
tions, we reinterpret the Roberts graph as a token slid-
ing game, with Figure 10 serving as a Rosetta stone.
Consider the first column of this figure, where the n-
Roberts graph on top is unraveled below into a game
board with n − 1 slides (appropriately color-coded).
Here, the base node of the Roberts graph is replaced
by our given partition, one for each direction, with the
2n− 1 positions represented by black tokens. The goal
of this game is to move these tokens into the 2n − 1
empty slots on the game board above by a sequence of
slides, corresponding to rolls of the Roberts graph.

The top row of Figure 10 shows a 5-cube rolling twice
in the x1 direction, followed by a roll in the x4 direc-

tion, and a roll in the x3 direction. The bottom row
displays the corresponding tokens moving along their
appropriate slides, leaving the partition box and occu-
pying empty slots on the game board above. The fea-
tures of the token game, inherited from the properties
of rolls, are as follows:

1. Each roll of the Roberts graph in a particular direc-
tion slides all the tokens along that direction one
place up.

2. When a token reaches the end of its slide (eg, di-
rection x4, as displayed by the fourth column of
Figure 10), it can no longer use that direction.

3. The antipode to the base (topmost on the Roberts
graph) acts as a transfer point, moving tokens from
one directional slide into another.

Theorem 5 For any n-cube partition, there exists a
path unfolding of an n-cube whose bounding box dimen-
sions matches the partition.

Proof. We provide an unfolding algorithm by rolling
along directions satisfying a given partition. Parts in
the partition with more than one token are called tow-
ers, whereas parts with exactly one token are dubbed
singletons. Begin by decomposing the 2n−1 tokens into
four groups:

1. The set S of tokens in the singletons.

2. The set B of bottom tokens in each tower.

3. The set T of top tokens in each tower.

4. The remaining set M of (middle) tokens.

It follows that |T | = |B| = (n− 1)− |S| and

|M | = (2n− 1)− |T | − |B| − |S| = |S|+ 1.
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Example 5 Figure 11 shows two distinct partitions of
15 tokens into 7 parts (when n = 8), labeled according
to the terminology above. In these cases, it is clear that
|T | = |B| and |M | = |S|+ 1.
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Figure 11: Two distinct partitions when n = 8.

Our algorithm is broken into three steps:

Step 1: Perform one slide in each direction of a to-
ken from B. This is possible since the transfer point is
empty; see Figure 12(abc).

Step 2: Perform alternating slides between tokens
from M and S, starting and ending with M , until all
such tokens depleted. This is well-defined since |M | =
|S|+1. Since the first position on the game board along
any element of M already contains a token from Step
1, a slide along its direction moves this token into the
transfer point; see Figure 12(d). Now, sliding a token of
S fills the first and last positions along this directional
track with tokens, making this direction unusable; see
Figure 12(e). This is ideal, for S contains only one token
in each direction. After alternating between M and S,
depleting all elements of S, slide one final time along
the last element of M , loading a token onto the transfer
point; see Figure 12(f).

Step 3: Perform one slide in each direction of a to-
ken from T . Each slide moves the token of the transfer
point to the end of the track, which replenishing the
transfer point with another token. This fills all the po-
sitions, as these are the final elements in each tower; see
Figure 12(ghi). �

Observation 1 Theorem 5 shows that the n-cube can
be unfolded into extremes: a long thin 2 × · · · × 2 ×
(n + 2) box and a cubelike 3 × · · · × 3 × 4 box, with a
spectrum of sizes in between. It would be interesting
to explore the distribution of cube partitions over all
possible unfoldings of the n-cube.

Observation 2 Up to symmetry, there are 11 nets of
the 3-cube and 261 nets of the 4-cube. For a general
n-cube, it is an open problem to enumerate its distinct
nets. The theorem above provides a (very weak) lower
bound to this problem.
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Figure 12: The partition slide algorithm.

4 Conclusion

The work of Horiyama and Shoji [3] show that every
edge unfolding of the five Platonic solids results in a
net. The higher-dimensional analogs of the Platonic
solids are the regular convex polytopes: three classes of
such polytopes exist for all dimensions (simplex, cube,
orthoplex) and three additional ones only appear in 4D
(24-cell, 120-cell, 600-cell). We have considered all un-
foldings of cubes, and a similar result for simplices easily
follows. We are encouraged to claim the following:

Conjecture 1 Every ridge unfolding of a regular con-
vex polytope yields a net.
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