
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A lower bound on the number of colours needed to nicely colour a sphere

Péter Ágoston∗

Abstract

The Hadwiger–Nelson problem is about determining
the chromatic number of the plane (CNP), defined as
the minimum number of colours needed to colour the
plane so that no two points of distance 1 have the same
colour. In this paper we investigate a related problem
for spheres and we use a few natural restrictions on the
colouring. Thomassen showed that with these restric-
tions, the chromatic number of all manifolds satisfying
certain properties (including the plane and all spheres
with a large enough radius) is at least 7. We prove that
with these restrictions, the chromatic number of any
sphere with a large enough radius is at least 8. This
also gives a new lower bound for the minimum colours
needed for colouring the 3-dimensional space with the
same restrictions.

1 Introduction

1.1 Colourings of the plane

Figure 1
Figure 2

The Hadwiger–Nelson problem is a well-known prob-
lem in combinatorial geometry. It asks to determine the
chromatic number of the plane (CNP), i.e., the mini-
mum number of colours needed to colour the plane so
that no two points of distance 1 have the same colour.
Alternatively, it is the chromatic number of the graph
of unit distances on the plane. Since 1950 it has been
known that 4 ≤ CNP ≤ 7. The lower bound was
obtained by Nelson (1950), but it can be most eas-
ily proven by using a graph called the Moser spindle
(Figure 1) (Moser, Moser (1961) [M]), while the upper
bound was given by Isbell (1950), using the colouring in
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Figure 2. Since 2018, it is also known that CNP ≥ 5
(de Grey [dG]).

The problem has some variations:
If we restrict the colour classes to be measurable,

the best known lower bound for the number of colours
needed is also 5 (Falconer (1981) [F]) and the best
known upper bound is also 7 (also from Figure 2).

If we restrict the colour classes to be the unions of
shapes bounded by Jordan curves (such a shape is called
a tile and such a colouring is called a tile-based colouring
or simply a tiling), then the best known lower bound for
the number of colours needed is 6 (Townsend (2005) [T])
and the best known upper bound is also 7.

Thomassen also defined a type of tiling:
A colouring of a surface with a metric is nice, if it is

a tiling, all tiles have diameter less than 1, all pairs of
tiles with the same colour have distance more than 1
and all tiles are simply connected. We refer to such a
colouring as a nice tiling.

He also proved the following theorem:

Theorem 1 [T] Suppose a surface S satisfies the fol-
lowing three conditions for some natural number k:
1. Every noncontractible simple closed curve has di-

ameter at least 2.
2. If C is a simple closed curve of diameter less than

2, then the area of int(C) is at most k.
3. The diameter of S is at least 12k + 30.
Then every nice tiling contains at least 7 colours.

Since the plane satisfies the conditions, the theorem
proves that every nice tiling of the plane contains at
least 7 colours.

Note that the statement for the plane also follows
from a relatively easy proof using Lemma 2 and the
fact that a triangulated planar graph has 3n− 6 edges.

1.2 Colouring of spheres

We can define the chromatic number of a sphere of
radius r similarly to the planar case: it is the mini-
mum number of colours needed to colour the points of
a sphere of radius r such that no two points with Eu-
clidean distance 1 have the same colour.

Much less is known of the value of this number com-
pared to the planar case.

It is known that the chromatic number of a sphere of
radius r is at least 4 if r ≥ 1√

3
. For r >

√
3
2 Moser’s
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spindle gives the lower bound, for smaller values, a gen-
eralized version of Moser’s spindle is used. (Simmons
(1976) [S])

It is also known that the chromatic number of any
sphere is at most 15, even with all of the above defined
restrictions, as the 3-dimensional space has a 15-tiling
(Radoičić, Tóth (2003)[RT]), which can be used to gen-
erate such a colouring.

Recently, a 7-colouring of large enough spheres have
also been found by Tom Sirgedas, as part of the Poly-
math 16 project.1

Also, the minimal number of colours needed for a nice
tiling of a large enough sphere is at least 7, which follows
from Theorem 1.

The main result of this paper is improving this num-
ber to 8.

Note that some sources mentioned earlier that the
chromatic number of all spheres is at most 7 [BMP]
[HDCG]. It seems (from personal communication
through Dömötör Pálvölgyi) that the authors expected
that a colouring similar to that of Isbell in Figure 2
also works for spheres. The present paper disproves
this assumption, though it does not contradict to the
chromatic number of spheres being at most 7.

This result also improves the lower bound for the min-
imal number of colours needed for a nice tiling of the
3-dimensional space, for which problem the best known
bound was 6 for the general colouring case (Nechushtan
(2002) [N]).

2 Results

2.1 Preliminary statements

Definition 1 We call a colouring of a graph nice, if
there are no two different vertices within distance at
most 2, which are coloured with the same colour. Alter-
natively, a nice colouring can be defined as a colouring
of G, which is also a proper colouring for G2 (the square
of G).

Lemma 2 If a tiling of a surface is nice, then applying
the same colouring to the adjacency graph of the tiles
also gives a nice colouring.

The proof is in the Appendix.

Lemma 3 If S is a sphere with radius r ≥ 2
π and A ⊆

S such that the spherical diameter of A is less than 1,
then there is a unique connected component of S \ A,
which contains all points of S with the exception of at
most an open disk of radius 1.

The proof is in the Appendix.
1https://groups.google.com/forum/#!topic/hadwiger-nelson-

problem/tSOs7MypGxE

Lemma 4 If S is a sphere with radius larger than 2
π

and the adjacent tiles A,B ⊆ S both have spherical di-
ameter less than 1, then there is a unique connected
component of S \ (A ∪B), which contains all points of
S with the exception of at most an open disk of radius
1.

The proof is in the Appendix.
For any set A ⊆ S or two sets A,B ⊆ S, call the

unique component described above the large component
of S \ A or S \ (A ∪B), respectively, and all the other
components the small components.

2.2 The main result

Theorem 5 There is no nice tiling with at most 7
colours of a large enough (radius r ≥ 18) sphere S, even
if we generalize the definition and allow tiles not to be
simply connected.

In order to make the proof more legible, we give an
outline of the main steps.

Suppose that there exists such a colouring of S and
take the adjacency graph G of the tiles such that all tiles
are represented by one of their points. First, by deleting
some vertices and edges, we get rid of all multiple edges
and cut vertices and get a graph G′, which is a triangu-
lated planar graph and still has the property that all of
its pairs of neighbouring vertices have distance less than
2. If we had a nice tiling of S, we also have a colouring
of this graph, which is not only nice, but also no two
vertices with distance at most 1 get the same colour.
This will lead to a contradiction.

Since G′ is a triangulated planar graph with maxi-
mum degree at most 6 (otherwise its colouring could
not be nice), it has at most 12 vertices with degree less
than 6 (exactly 12 if counted with multiplicity given by
the differences of 6 and the degrees of these vertices).
These vertices are called irregular vertices.

Also, for some subsets of G′ that only have vertices
with degree 6, there exists a function to an infinite trian-
gular grid such that the mapping is a local isomorphism
in all vertices.

Now we have three cases.
The first case is when all of the irregular vertices are

close to each other. In this case, we find a cycle c1 of
bounded length separating them from most of S. And
from the mapping we can get from the latter part to
the triangular grid, we can prove that this part has a
bounded graph size. So we can get to a contradiction
by finding a vertex far away from the irregular vertices,
which exists if r is large enough.

In the second case the irregular vertices can be di-
vided into two groups both of cardinality 6 (counted
with multiplicity), where the elements of the two groups
have a large enough distance from each other, while in-
side one group, the distances are bounded. In this case,
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we can construct two cycles c2 and c3 of bounded length
separating these two groups, which are close enough to
the first and the second group, respectively. Then again
we get a contradiction from the mapping of the part
between the two cycles to the triangular grid: we find
a cycle in this part that goes through two nearly an-
tipodal points, but its graph length is not larger than
max(l(c2), l(c3)).

Finally, the last case is when there is at least one way
to divide the irregular vertices into two groups such that
no two points from different groups are close to each
other and the cardinality of the two groups (counted
with multiplicity) is not divisible by 6. In this case,
we get a contradiction by examining the exact way to
colour parts of the infinite triangular grid.

Figure 3: Case 1, Case 2 and Case 3

Now we continue with a detailed proof.

Proof. For the sake of simplicity, first we will use spher-
ical distances in the calculations (so we are now solving
the problem when tiles have spherical diameter at most
1 and tiles of the same colour have spherical distance
more than 1) and we will only convert the problem to
the Euclidean distance definition in the end. So now
suppose that S has a radius r ≥ 17.9.

Suppose we have a nice tiling of S.
Take the graph G where the tiles T1, ...Tn are rep-

resented by vertices v1, ...vn and the neighbouring ones
are connected. The colouring of the tiles gives a nice
colouring of this graph by Lemma 2, which we will use
in the proof.

We can also get rid of vertices or edges, and prove the
statement for the remaining subgraph as it also implies
that the original graph cannot be coloured with a nice
colouring with 7 or less colours either. First, eliminate
the multiple edges (a multiple edge can occur if two
tiles have a border made out of disjoint segments): if we
find a pair of parallel edges between vi and vj , we can
just merge them and delete everything between them
(between meaning the vertex set corresponding to the
small components of S \ (Ti ∪ Tj)). We also eliminate
cut vertices (these correspond to not simply connected
tiles) by deleting all vertices corresponding to the tiles
in the small components of S \ vi for any cut vertex vi.
Also, we can eliminate those complete graphs with more
than 3 vertices that represent points where more than

3 tiles meet: we just take an arbitrary triangulation of
them as if the tiles would not exactly meet in one point.
This way we have got a triangulated planar graph G′,
and from now on, triangles will always mean the empty
3-cycles of G′. If G′ has n′ vertices, it has 3n′−6 edges,
which means that the sum of the degrees of its vertices is
6n′−12. And since there are no vertices with neighbours
of the same colour (the colouring for G′ is also nice), all
vertices have degree at most 6. So there are at most 12
vertices having degree less than 6. Call them irregular
vertices and for any irregular vertex, let its multiplicity
be the difference of its degree from 6. From the above,
there are exactly 12 irregular vertices, if we count them
with multiplicity. Also, call the set of irregular vertices
I and call the elements of V (G′) \ I regular vertices.

Now draw G′ on S so that vi ∈ Ti and the edges
are represented by simple Jordan curves satisfying the
following conditions:

1) The two endpoints of the image of an edge e has
the two vertices e is incident to as its endpoints.

2) If the border of two tiles Ti and Tj contains more
than one point, then draw the edge between vi and vj
so that it only contains points from these two tiles. This
also means that all points of the edge have distance less
than 2 from both vi and vj .

3) For any point in which more than three tiles meet,
the edges corresponding to pairs of tiles which only bor-
der each other in this point only run through border seg-
ments starting from the meeting point. Also, the edges
should run so close to the common border point of the
tiles that all points of all edges have distance less than
2 (measured on S) from both of the endpoints of that
particular edge.

Lemma 6 Any (open or closed) disk D on S with ra-
dius at least 1 contains at least one vertex from G′.

The proof is in the Appendix.
So it is enough to prove the following (stronger) ver-

sion of Theorem 5:
Suppose we have a sphere S with radius r ≥ 17.9 and

a fully triangulated planar graph G′ on the surface of
S, which has n′ vertices, all of its vertices have distance
less than 2 on S, all open unit disks on S contain at least
one vertex and all of the points of all of its edges have
distance less than 2 from both of its respective endpoints.
Then G′ cannot be coloured with 7 colours in a way
so that any two vertices of the same colour have graph
distance at least 3 in G′.

Now continue with some definitions:
For any two subsets of S, let their spherical distance

be their spherical distance on S (denoted by distS(a, b)).
For any two subgraphs Ga and Gb of G′, let

their graph distance mean the smallest graph distance
in G′ occuring between their vertices (denoted by
distG′(a, b)).
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For any 3-cycle c in G′ that has a side, which is
Let the graph length of a path or closed path p in G′

be the number of its edges. We denote it by l(p).
Let the spherical broken line of a path or closed path

p in G′ be the curve defined by connecting neighbouring
vertices of p with spherical segments instead of the edges
connecting them.

Let the broken line length of a path or a closed path p
inG′ be the length of the spherical broken line belonging
to p. We denote it by L(p).

Let the i-neighbourhood of a vertex v of G′ be the
subgraph of G′ induced by those vertices, which have
graph distance at most i from v (denoted by Ni(v)).

Let the strict i-neighbourhood of a vertex v of G′ be
the subgraph ofG′ induced by those vertices, which have
graph distance exactly i from v (denoted by ni(v)).

For a vertex v and a set S of vertices, let e(v, S) mean
the number of edges starting from v and ending in any
of the vertices of S.

We will use the following lemmas later in the proof:

Lemma 7 For any path or closed path p in G′, L(p) <
2l(p).

Proof. All edges connect points in neighbouring tiles
meaning that they have a distance less than 2 as both
of the endpoints have a distance at most 1 from an ar-
bitrarily chosen border point. And by summing these
inequalities, we get the statement. �

Lemma 8 If we take a subgraph G∗ of G′, which does
not include any irregular vertices and is defined by a
simply connected region S∗ on S such that those ver-
tices are included, which are inside S∗ and those edges
are included, which are fully inside S∗, then there ex-
ists a function ϕ from the vertices and edges of G∗ to
an infinite triangular grid T (for the sake of simplicity,
suppose that it is made up of regular triangles) fulfilling
the following criteria:
1) It keeps the incidence relation between vertices and

edges.
2) For any vertex v ∈ G∗, if for two edges e1 and e2

in G∗, that have v as an endpoint, there are exactly k
edges of G′ between them going around v in a positive
order, then there are exactly k edges of T between ϕ(e1)
and ϕ(e2) going in a positive order around ϕ(v).
The above colouring is unique up to isometries pre-

serving orientation.

The proof is in the Appendix.

Lemma 9 We can find a similar ϕ function if G∗ is
defined by a subset S′ of S that is homeomorphic to
S1 × [0, 1] (like S minus two disjoint disks) and still
does not contain irregular vertices and we also require
G∗ to be connected, but here the codomain of ϕ will be
the set of (possibly infinite) sets of vertices in case of

vertices and the set of (possibly infinite) sets of edges
for edges. Here we require from ϕ that for any vertex
v ∈ G∗, and an edge e ∈ G∗ incident with v all of the
elements of ϕ(v) are incident with at least one element
of ϕ(e). We also require that for any vertex v ∈ H and
any element v′ ∈ ϕ(v), we can choose an element from
all the ϕ’s of the edges incident to v such that they are
all incident to v′ and for any two of them, they have
exactly as many edges between them going around v′ in
a positive order as the corresponding edges in G∗ have
going around v in a positive order.

The proof is in the Appendix.
Analogously to the colouring of the plane by Isbell,

call a colouring of the vertices of the infinite triangu-
lar grid T an Isbell colouring if it is constructed in the
following way:

We take a vertex in the grid and colour it and
its neighbours with 7 different colours. We then tile
the grid with the disjoint translates of this coloured
hexagon.

Such a colouring is trivially nice and periodical, thus
any Isbell colouring of T can be generated using any
of the vertices of T as the starting vertex. Also, for
all colourings of the starting hexagon, there are ex-
actly two ways to colour T depending on how we place
the hexagons compared to each other. Also, all Isbell
colourings can be generated with the above procedure
starting from any hexagon formed by a vertex and its 6
neighbours.

Lemma 10 The graph in Figure 4 can only be nicely
7-coloured by a part of an Isbell colouring.

The proof is in the Appendix.

Figure 4
Figure 5

Lemma 11 If we embed the graph in Figure 5 in the
infinite triangular grid, then any colouring of it is con-
tained in at most one Isbell colouring of T .

Proof. The hexagon part determines the colouring of
that particular hexagon, while the remaining vertex
leaves at most one of the two colourings that can
be generated from that particular colouring of the
hexagon. �
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Definition 2 If we have a cycle c in G′ then let one of
its sides be called as the inside and the set of vertices
of G′ in it be called Vi, while the set of edges in it be
called Ei, while the other one being the outside and call
the set of vertices of G′ in it Vo and the set of edges in
it Eo. The curvature of c is

∑
v∈c

2− e(v, Vi).

(Note that if c does not contain irregular ver-
tices, then this definition is trivially equivalent with∑
v∈c

e(v, c ∪ Vo)− 4.)

Lemma 12 The curvature of a cycle c is equal to 6
minus the number of irregular vertices in the inside of
c (counted with multiplicity).

The proof is in the Appendix.
Let H be the graph with vertex set I and edges con-

necting the pairs of vertices, which have graph distance
at most 3 in G′.

Now take a connected component Hi of H and take
a spanning tree of Hi. For any edge e of this spanning
tree find a path of length at most 3 in G′ connecting the
two endpoints of e (per definition, such a path exists)
and take the union of these paths, which is a graph in
G′. Take a spanning tree of this graph and call it H ′i.
Do this for all components of H and call the union of
these trees H ′.

Lemma 13 The H ′i’s have graph distance at least 2
from each other in G′.

The proof is in the Appendix.

Lemma 14 If the number of vertices in Hi (counted
with multiplicity) is ni, then |V (H ′i)| ≤ 3ni −
2, |E(H ′i)| = |V (H ′i)| − 1 ≤ 3ni − 3 and
{v ∈ G′|distG′(v,Hi) = 1} ≤ 5ni

The proof is in the Appendix.
Now take an Hi and take the union Ui of the trian-

gles (borders included) that have at least one vertex in
common with Hi.

i4

i2

i1

i3

i5 i6

Figure 6: A part ofG′ with the cho-
sen paths connecting the vertices of
I highlighted

i4

i2

i1 i3

i5

i6

Figure 7: The
part of H corre-
sponding to this
part of G′

i4

i2

i1

i3

i5 i6

Figure 8: The corresponding part of H ′ denoted by
bold, the Ui’s denoted by grey and the c′is denoted by
red.

Lemma 15 There exists a point Oi ∈ S for which all
the vertices of H ′i fit into a disk Di of radius 3ni − 3
around Oi, all the vertices belonging to Ui fit into a disk
D′i of radius 3n−1 around Oi and all the edges belonging
to Ui fit into a disk D′′i of radius 3n− 3 around Oi.

The proof is is in the Appendix.
Let ci be the cycle that borders the connected compo-

nent of S\Ui that contains S\D′′i . c1 is trivially formed
by vertices having graph distance 1 from H ′i meaning
that it has at most 5ni vertices because of Lemma 14.
Also, per definition, it is inside D′′i .

Now we have three cases:

Case 1: H is connected.
Let H1 be the only component of H. Then l(c1) ≤ 60

as of Lemma 14 and its vertices fit into an open unit
disk D′1 of radius 35 around O1, while its edges fit into
an open unit disk D′′1 of radius 37 around O1.

Lemma 16 For any vertex v of G′ ∩ S1, its graph dis-
tance from c1 is at most 10.

The proof is in the Appendix.
But there is a vertex of G′ inside the open unit disk

around the antipodal of O1, which has distance more
than rπ − 36 > 20 from D′1. And since all of this disk
is outside D′′1 (the distance of O1 and its antipodal is
at least π · 17.9 > 56 > 37 + 1), the vertex inside it is a
vertex of S1, so it should have graph distance at most
10 and thus, spherical distance less than 20 from all the
vertices of c1, which is a contradiction.

Case 2:
H has two connected components and both have ver-

tex number 6 (counted with multiplicity). Call these
components H2 and H3

Lemma 15 and the subsequent statement yield that
there exists a cycle c2 of graph length at most 30 sepa-
rating H ′2 from all the vertices outside a disk D′′2 of ra-
dius 19. Similarly there exists a cycle c3of graph length
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at most 30 separating H ′3 from all the vertices outside
a disk D′′3 of radius 19. Now define the interior of c2
(int(c2)) as the component of S \ c2 containing H ′2 and
the interior of c3 (int(c3)) as the component of S \ c3
containing H ′3. Since all the vertices of c2 and c3 have
graph distance 1 from H ′2 and H ′3, respectively, from
Lemma 13 neither H ′2 has a common vertex with c3,
neither H ′3 has a common vertex with c2. So neither of
c2 or c3 has vertices both in the interior and the exterior
(the opposite component to interior) of the other one.
Also, it is not possible that their interiors are covering
S completely as they both fit into an open disk of radius
19 and S cannot be covered by two disks of this size. So
we have two possibilities:

The interior of one of c2 and c3 is completely inside
the interior of the other one. In this case, we can apply
the argument used in Case 1 as the one having the other
one in its interior also has all the vertices from I inside
it, has length at most 30 < 60 and fits into a disk of
radius 19 < 35 < 37.

In this case, define G2 as the graph
((ext(c2) ∪ c2) ∩ (ext(c3) ∪ c3))∩G′ (where ext(c2) and
ext(c3) denote the exteriors of c2 and c3 (the opposite
side as their interiors)).

(A third possibility would be that ext(c2) ⊆ int(c3)
and ext(c3) ⊆ int(c2), but it is clearly impossible due
to their sizes.)

Now from Lemma 9 we can find a ϕ function running
from G2 to the infinite triangular grid T .

Now we will use the following lemma:

c2 c3

Figure 9

Lemma 17 There exists a series of cycles (Γ0, ...,Γk
for some k) in G′ with Γ0 = c2 and Γk = c3 satisfying
3 conditions:
1) All of them have graph length at most 30, and thus,

broken line length less than 60.
2) For any i, j with |i− j| = 1 and any vertex v of Γi,

there is a vertex of Γj neighbouring v in G′ and thus,
having spherical distance less than 2 from it.
3) For any i, j with |i− j| = 1 and any edge e of Γi,

there is a vertex of Γj having graph distance at most 1
from both of the endpoints of e in G′, and thus, having
spherical distance less than 4 from all of the points of e.

The proof is in the Appendix.
Now we can finish the proof for Case 2 using the fol-

lowing lemma:

Lemma 18 At least one of Γ0, ...,Γk goes through two
points that have spherical distance at least rπ − 5.

The proof is in the Appendix.
And since all of these curves have graph length at

most 30, from Lemma 7 they also have broken line
length less than 60. But from Lemma 18, there is
one with broken line length more than 2 · (rπ − 5) ≥
2 · (17.9π − 5) > 102, which is a contradiction.

Case 3: Neither of the conditions of the previous
cases hold.

Lemma 19 If Case 3 holds, then there exists a cycle
c4 in G′, all of whose vertices have graph distance at
least 2 from all the irregular vertices and which separates
them into two groups so that both of the groups has a
cardinality not divisible by 6 (counted with multiplicity).

The proof is in the Appendix.

Lemma 20 For all vertices of c4, a spanning subgraph
of the 2-neighbourhood can be obtained as the image of
an incidence and orientation preserving function Ψ from
the hexagonal graph in Figure 4.

The proof is in the Appendix.

Lemma 21 The curvature of c4 is divisible by 6.

The proof is in the Appendix.
And this gives us a contradiction as the curvature of

c4 is not divisible by 6 according to Lemma 12

So it is impossible to have a nice tiling of a sphere
if we are using spherical distances and r ≥ 17.9. From
this, it is impossible to have a nice tiling of a sphere if
we are using Euclidean distances and r ≥ 18 as if we
have a sphere of radius r ≥ 18 with a nice tiling, then
a scaled version of the tiling would give a nice tiling for
a sphere of radius 1

2 arcsin 1
2r

≥ 17.9 using the spherical
distance version, which is a contradiction. �
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3.1 Appendix

Proof of Lemma 2
The statement not being true would mean that there

is a nice tiling for some surface, for which two vertices
corresponding to tiles of the same colour have graph
distance 1 or 2, but in the first case, their distance on
the surface would be 0, while in the second, it would be
less than 1, as the diameter of their common neighbour
is less than 1. So the colouring would not be nice, so
the statement is true.
Proof of Lemma 3
If we take an open disk D of radius 1 around any

point of A, it covers A, so S \D ⊆ S \A and since S \D

is connected, all of its points are in the same connected
component of S \ A. And this component is unique as
S \ D is a closed disk of radius rπ − 1, so none of the
other components satisfy the property described in the
statement of the lemma.

Proof of Lemma 4
If we take an open disk D of radius 1 around a com-

mon border point of A and B, it covers both A and B,
so S \ D ⊆ S \ (A ∪B) and since S \ D is connected,
all of its points are in the same connected component
of S \ (A ∪B). And this component is unique as S \D
is a closed disk of radius rπ − 1 > 1, so none of the
other components satisfy the property described in the
statement of the lemma.

Proof of Lemma 6
If the center O of D belongs to a tile that is repre-

sented inG′, then the vertex representing it has distance
less than 1 from it, so it is inside D.

If O belongs to a tile that is not represented in G′

because it is in the small component of S \ t for some
tile t that is represented in G′ or in the small component
of S \ (t1 ∪ t2) for some tiles t1 and t2 represented in G′
(it is possible that O is also in the small component for
some tile or tiles that are not represented in G′), then
we can find a segment going through O that has both
of its endpoints in the same tile represented in G′ or at
least on its borders and which has length less than 1. So
it has distance less than 1 from the vertex representing
this tile, which is thus in D.

Proof of Lemma 8

→

The statement can be proven by induction for the
number of vertices of G∗:

If G∗ does not have any vertices, the statement is
trivial. Now suppose that it has m vertices and for
all smaller vertex numbers, we have already proven the
statement.

Suppose G∗ is connected, otherwise the statement is
trivial (its connected components can be defined by con-
nected subsets of S, from which we can apply the induc-
tion hypothesis).

There is at least one (in fact, at least 4) irregular
vertex in G′, and it is not contained in G∗, thus if G∗ is
not empty, there is a vertex v inside G∗, which has at
least one neighbour in G′ \G∗.

If v is a cut vertex in G∗, then examine the parts it
separates G∗ to (v included). All such graphs also can
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be determined by a simply connected subset of S and
they all have a smaller number of vertices than G∗ had,
and since we already have ϕ’s for these smaller graphs,
by choosing ϕ(G∗) arbitrarily and rotating the images
of the components around it appropriately, we get an
appropriate ϕ.

If v is not a cut vertex, then suppose there are two
edges e and e′ of G′ \G∗ starting from v. Then we can
find points P ∈ e \ S∗ and P ′ ∈ e′ \ S∗ that means
that the curve starting from P and ending in P ′ going
through v on e and e′ separates S∗ into at least two
separate parts. Thus, since v is not a cut vertex, at
most one of the above parts contains any vertices of G∗
meaning that the edges inside G∗ that are starting in
v form a connected interval among all the edges in G′

starting from v. And because G′ being triangulated,
they form a chain in which all the neighbouring pairs of
edges have 1 edge between them around their common
vertex in the appropriate orientation. So the ϕ function
belonging to G∗ \ v translates them to the subset of a
regular hexagon around one vertex in T , so ϕ(v) can
be placed in its center, and the new ϕ we get (by also
translating the edges from v into appropriate places)
satisfies the conditions.

If G∗ is connected, then ϕ is unique with respect to
isometry as starting from a vertex and deciding which
direction will be which, we always can continue in only
one way.

Proof of Lemma 9

Take a simply connected covering space of S′.

Again, we can suppose that we only care about con-
nected subgraphs.

We can find a function ϕ′ from the pre-image of G∗
(call this pre-image G∗′) to T in the same way we did
it above, despite G∗′ containing an infinite number of
vertices and edges: we simply use induction by always
expanding G∗′, but never deleting anything from it and
also we always keep the graph connected. And since the
ϕ′ of these

And from this we get the ϕ function mentioned in
the statement: in any vertex or edge it will take the set
of the ϕ′’s of the pre-images of the particular vertex or
edge.

And this ϕ will satisfy the conditions of the lemma as
a consequence of the definition of covering spaces.

Proof of Lemma 10

Figure 10
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Colour the central vertex and its neighbours first (Fig-
ure 11). We now have to colour the remaining 12 ver-
tices so that all border vertices of the central hexagon
get exactly one neighbour from all colours (except for
its own colour). And since for all colours from 2 to 7,
there are exactly 3 coloured vertices that lack a neigh-
bour with that colour and all of the uncoloured vertices
border 1 or 2 of the coloured ones, we must use all six
of these colours at least twice. But since there are 12
uncoloured vertices in total, we must use all of them ex-
actly twice. From the above conditions, there are only
two possibilities for choosing the vertices with colour 2
and from here, all the other colours follow (see Figure 12
and Figure 13).

Proof of Lemma 12
We will contract c into one triangle from the triangu-

lation in the inside of c using the following steps:

→

Figure 14: Step type 1

1. If we find an edge in Ei that connects two vertices
va and vb which are both on c and have distance 2 in
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c, then we throw out the two edges between va and vb
and replace them with this edge and we also reduce Ei
accordingly (as seen in Figure 14).

→

Figure 15: Step type 2

2. If we find a vertex vc in Vi that is neighbouring two
vertices vd and ve in c that are neighbouring each other
in c, then we delete the edge vdve from c and replace it
with the edges vdvc and vcve and then reduce Vi and Ei
accordingly (as seen in Figure 15).

First I will prove that with always performing one of
the steps above until it becomes impossible, the proce-
dure we get is finite and ends in c being a triangle with
its empty side being the inside:

If we are only looking at the subgraph of c∪Ei which
is spanned by the vertices of c, it contains at most n−
3 diagonals, so there is a vertex vf (actually, at least
3) of c with no diagonals starting from it. And then
if c is not already a triangle, the edge vf forms with
one of its neighbours (vg) either belongs to a triangle
that connects vg with the other neighbour of vf or to
a triangle that connects both vf and vg with a vertex
from Vi. In the first case, we can perform step 1, while
in the second case, we can perform step 2. (And if c
is a triangle with its empty side being the inside, then
we cannot perform any of the steps.) And the number
of triangles inside c always decreases with exactly 1, so
the procedure is always finite.

If we perform step 1, the curvature of c does not
change as the two summands belonging to va and vb
increase by 1, while the summand 2 − 0 = 2 belonging
to the vertex we have thrown out gets out from the sum.

If we perform step 2 and vc is a regular vertex, the
curvature of c does not change either, since the two
summands belonging to vd and ve increase by 1 each
and the new summand belonging to vc is 2− 4 = −2.

If we perform step 2 and vc is an irregular vertex with
multiplicity k, the curvature of c increases with k, since
the two summands belonging to vd and ve increase by 1
each and the new summand belonging to vc is 2−4+k =
k − 2.

So since in the beginning all irregular vertices were
in Vi and in the end no vertices remained in Vi and
the curvature increased with k exactly if we deleted an
irregular vertex of multiplicity k from Vi, otherwise it
remained unchanged, the curvature have increased with

the number of irregular vertices originally in Vi (counted
with multiplicity). Also, the curvature of the triangle
(with the empty side being the inside) is trivially 6, and
this finishes the proof.

Proof of Lemma 13
Per definition, dist(v, V (Hi)) ≤ 1 for all v ∈ V (H ′i).

So if two vertices of some distinct graphs H ′i and H ′j
have distance at most 1, then there also exist two ver-
tices of Hi and Hj with distance at most 3, which con-
tradicts to Hi and Hj being separate components of H.

Proof of Lemma 14
Since Hi has ni vertices counted with multiplicity, it

has at most ni vertices counted without multiplicity.
And we have drawn |V (Hi)| − 1 ≤ ni − 1 paths all of
length at most 3 (and thus all having at most 2 interior
vertices) between them, thus, their union has at most
3ni − 2 vertices. And since H ′i is a subgraph of this
union, it also has at most 3ni − 2 vertices. And since it
is a tree, |E(H ′i)| = |V (H ′i)| − 1 ≤ 3ni − 3.

So only the third statement remains to be proved.
H ′i contains ni irregular vertices (counted with multi-
plicity), so

∑
v∈H′i

degG′(v) = 6 · |V (H ′i)| − ni. And from

these, |{(v, e)|v ∈ V (H ′i), e ∈ E(G′ \H ′i), v ∈ e}| =∑
v∈H′i

degG′(v)− 2 · |E(H ′i)| = 4 · |V (H ′i)| − ni + 2. And

all edges of H ′i border exactly two triangles and all tri-
angles are bordered by at most two edges of H ′i since
H ′i is a tree. Denote the number of triangles with one
side in H ′i by k1 and the number of triangles with two
sides in H ′i by k2. From the above, we know that
k1 + 2k2 = 2 · |E(H ′i)| = 2 · |V (H ′i)| − 2. The number of
edges of G′ \H ′i connecting two vertices of H ′i is at least
k2, since any triangle with two sides in H ′i has such an
edge as its third edge, and such an edge cannot belong
to two different such triangles as then there would be a
4-cycle in H ′i. Thus, the number of edges of G′ having
one endpoint in H ′i, while the other one in G′ \H ′i is at
most |{(v, e)|v ∈ V (H ′i), e ∈ E(G′ \H ′i), v ∈ e}|−2k2 =
4 · |V (H ′i)|−ni + 2− 2k2 as all such edges are in G′ \H ′i
and all edges of G′ \H ′i connecting two vertices from H ′i
were counted twice in the above calculation. Now take
a vertex v for which distG′(v,H ′i) = 1 and take the set τ
of triangles which have a side in H ′i and their third ver-
tex is v. It is trivial that every such triangle is bordered
by exactly two edges connecting v to H ′i and all edges
are contained as an edge of at most two such triangles.
Also, the latter inequality cannot be strict in case this
particular edge is also bordering a triangle that is not
in τ . So at least one of the following possibilities hold:

1) There are more than |τ | (so at least |τ |+ 1) edges
connecting v with H ′i

2) No edges connecting v with H ′i border the union
of the triangles from τ .

But 2) is only possible if τ is empty (in which case,



32nd Canadian Conference on Computational Geometry, 2020

1) still holds as there is at least one edge connecting
v with H ′i) or if τ contains all triangles bordering v in
which case the cycle formed by the neighbours of v is a
subgraph of H ′i, which is a contradiction as H ′i is a tree.
So 1) holds.

And by summing up such inequalities for
all v’s having graph distance 1 from H ′i, we
get that |{v|v ∈ V (G′), distG′(v,H

′
i) = 1}| ≤

|{(v, w)|(v, w) ∈ E(G′), v ∈ V (H ′i), w ∈ V (G \H ′i)}| −
k1 ≤ 4·|V (H ′i)|−ni+2−2k2−k1 = 2·|V (H ′i)|+4−ni ≤
5ni.

Proof of Lemma 15

Since |V (H ′i)| ≤ 3ni−2, if H ′ is a centered tree, there
is a vertex with graph distance at most 1.5ni − 1 from
all of its vertices, while if it is a bicentered tree, there is
an edge, whose endpoints both have graph distance at
most 16 from all of its vertices. In the former case, the
vertices of H ′ fit into an open disk of radius 32 because
of Lemma 7, while in the latter case, the vertices of H ′
fit into an open disk of radius 33 because of Lemma 7.
So in both cases the vertices of H ′ fit into a disk D1 of
radius 33 centered around a point on S called O1. And
since the vertices of U have graph distance at most 1
from H ′i, they

Proof of Lemma 16

Figure 16

Take the cycle c′1 in T represented by the blue cycle in
Figure 16, where the red one represents ϕ(c1) (and the
purple segments are their common edges). If we name
the length of the ith side of c′1 Ai for 1 ≤ i ≤ 6 and we
choose a vertex pi of ϕ(c1) on all 6 of them, then for all
i (i = 1, 2, 3) the two parts of ϕ(c1) separated by pi and
pi+3 both have at least |Ai+1|+ |Ai+2| segments parallel
with Ai+1 or Ai+2 (i counted modulo 3), so ϕ(c1) has
at least 2 |Ai+1|+ 2 |Ai+2| such segments in total. And
from summing up the three inequalities we get this way,
if we combine it with |Ai|+ |Ai+1| = |Ai+3|+ |Ai+4|, we

get l(c1) = l(ϕ(c1)) ≥
6∑
i=1

|Ai| = l(c′1) (the first equality

is trivial).

B1

B2

B3

ϕ(v)

A2

A5

A1

A3

A4

A6

Figure 17

Now take a vertex v in G1. If we call the segments
going through ϕ(v) parallel with A1, A2 and A3 and
ending in c′1 B1, B2 and B3, respectively (as in Fig-
ure 17), then we can write the following inequalities:
|Bi| ≤ |Ai| + |Ai−1|

2 + |Ai+1|
2 (for i = 1, 2, 3 if i is

counted mod 6)
|Bi| ≤ |Ai+3| + |Ai+2|

2 + |Ai+4|
2 (for i = 1, 2, 3 if i is

counted mod 6)

Summing up these 6 inequalities, we get
3∑
i=1

2 |Bi| ≤
6∑
i=1

2 |Ai| and if we combine this with the fact that the

distance of ϕ(v) from c′1 is at most min(|B1|,|B2|,|B3|)
2 we

get distG′(ϕ(v), c′1) ≤
⌊
l(c′1)
6

⌋
≤

⌊
l(c1)
6

⌋
≤ 10 (where

distG′(ϕ(v), c′1) denotes the graph distance of ϕ(v) and
c′1 in G′.

Now if we define Pmin as a path of minimal length
from ϕ(v) to c′1, we can start a path from v so that the
images of its vertices by ϕ are the vertices of Pmin in the
same order. And we can always take a step such that
the image of the next vertex will be the next vertex in
Pmin until we reach c1. And this can happen the latest
when the ϕ of the path reaches c′1, so distG′(v, c1) ≤
distG′(ϕ(v), c′1) ≤ 10.

Proof of Lemma 17
We will first contract G2 into a cycle using the fol-

lowing six kinds of steps:
(The figures below represent the ϕ(G2) and ϕ(c2),

which means that red broken line (ϕ(c2)) occasionally
can seemingly cross itself. From the curvature of both
c2 and c3 being 0, it is easy to see that the sum of the
angles of the turns is 0 for both ϕ(c2) and ϕ(c3), thus
for any vertex or edge from G2, its images by ϕ are
periodical translates of each other.)
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→

Figure 18: A vertex with degree 2 in G2 is removed from
G2 and c2 is changed accordingly.

→

Figure 19: A vertex with degree 3 in G2 is removed from
G2 and c2 is changed accordingly.

→

Figure 20: c2 is shifted in some direction towards c3
without adding anything to G2.

The other three possibilities are doing the same kinds
of steps with c3.

Now we will prove that with such steps, we always
can contract G2 into a cycle without adding any vertex
to G2 in any step.

First, suppose that c2 and c3 have no common edges.
Then if any of ϕ(c2) and ϕ(c3) is not a line, we can
find a convex turn in one of them (a vertex of c2 or c3
in which degG2

(c2) ≤ 3 or degG2
(c3) ≤ 3, respectively)

because both of them has a curvature of 6. So one of
the first two kind of steps (or their c3 counterparts) can
be applied.

Now suppose that c2 and c3 have no common edges,
but both of them are a line. In this case, we can apply
Step type 3 without adding any vertex to G2.

Now suppose that there is at least one edge in which
c2 and c3 meet. In this case there is at least one subset
Ŝ of S between c2 and c3 that is simply connected and
is fully bordered by c2 and c3. And if we count Ŝ as the
interior, its border has a curvature of 6, so even if in the
two vertices, where c2 and c3 meet, the border takes a
sharp convex turn (one, in which the degree towards Ŝ is
2, it still has to take a convex turn somewhere elsewhere,
in which case, we can leave this particular vertex from
c2 or c3.

Thus, the only case we cannot take such a step is if
c2 and c3 coincide. And since the number of triangles
between c2 and c3 always decreases with at least one,
in finitely many steps, the procedure ends in G2 being
a cycle.

Now take every step in which c2 was changed and
name the original c2 c

(0)
2 , c2 after the first step changing

it c(1)2 , c2 after the second such step c(2)2 , ... until we get
to c

(p)
2 (where p is the number of steps changing c2).

Similarly, if the number of steps changing c3 is q, we
can define cycles c(0)3 , c(1)3 , ..., c

(q)
3 .

Now take k = p + q and define Γ0 = c
(0)
2 , Γ1 = c

(1)
2 ,

..., Γp = c
(p)
2 = c

(q)
3 , Γp+1 = c

(q−1)
3 , ..., Γk = p

(0)
3 .

For these cycles, the first condition of the lemma triv-
ially applies, since all of the above steps decrease the
graph length for both c2 and c3, so since originally, c2
and c3 did not have graph length more than 30, none of
the Γi’s (i = 0, 1, ..., k) have. So their broken line length
is not more than 60.

The second and the third condition also can easily
checked for both the c(i)2 (i = 0, 1, ..., p) and the c(i)3

(i = 0, 1, ..., q)

Proof of Lemma 18

First, for all i = 0, ..., k let Γ′i be the antipodal curve
of Γi. Now define int(Γi) as the connected component
of S \ Γi, which includes the vertices of I2, and let the
other connected component be called ext(Γi). Now de-
fine int(Γ′i) and ext(Γ′i) as the antipodal sets of int(Γi)
and ext(Γi), respectively. Now define a function f(i) =
distS(V (Γi), ext(Γ

′
i)) − distS(V (Γi), int(Γ

′
i)). The first

half is 0 if and only if at least one of the vertices of Γi is
in ext(Γ′i) ∪ (Γ′i), while the second half is 0 if and only
if at least one of the vertices of Γi is in int(Γ′i) ∪ (Γ′i).
Thus, at least one of the two halfs is always zero and the
sign of f(i) is determined by which one is not zero. And
since V (Γ0) ⊆ D′′2 and int(Γ′0) is inside the antipodal of
D′′2 , they are disjoint and their distance is positive. Sim-
ilarly, V (Γk) and ext(Γk) are disjoint and their distance
is positive. Thus, f(0) < 0 and f(k) > 0. Now take the
first i, for which f(i) is positive. If f(i− 1) ≤ −3, that
means that all the vertices of Γi−1 have a distance at
least 3 from int(Γ′i−1), so the vertices of Γi are further
from int(Γ′i−1) than 1, since all of them has distance
less than 2 from at least one of the vertices of Γi−1.
But also, for all border points of int(Γi−1), there exists
a point of ext(Γi) with distance less than 4 from it, so
f(i) = distS(V (Γi), ext(Γi)) < 4−1 = 3. Thus, at least
|f(i− 1)| < 3 or |f(i)| < 3 is true, so one of the two
cycles includes a vertex and another point, whose an-
tipodals have spherical distance 3. And since the latter
is 2 away from a vertex of the same cycle, we have found
two vertices on one of the cycles with distance at least
rπ − 5 from each other.

Proof of Lemma 19
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Figure 21: A part of G

→

Figure 22: The same
part of G3

Let the components of H be H4, H5, ... Now take the
graph G3 which we get from G′ by deleting all the ver-
tices that have graph distance at most 1 (with respect
to G′) from any of the points of I and all the edges that
are incident to these vertices. All the irregular vertices,
which are in different connected components of H are in
different connected components of S \G3, since if there
would be a path on S connecting two irregular vertices
in different components of H, the triangles, edges and
vertices it meets would all have graph distance at most
1 from some irregular vertex, which gives us a contra-
diction.

Now take an Ha which does not have a vertex number
divisible by 6 (counted by multiplicity). If the point set
G3 contains a simple closed curve that separates the
vertices of Ha from all the other irregular vertices, then
this curve only can be a cycle in G3 and it is applicable
for c4. If G3 does not contain such a curve, it only can
mean that the connected component of S\G3 belonging
to Ii (call it Ci) separates the rest of S into at least two
parts of which at least two contains a positive number of
irregular vertices. Then we can separate Ci from both
of these two parts by a cycle ca and cb, and it is trivial
that both of these cycles separate the irregular vertices
into two non-empty sets and at least one of the cycles
divides I unevenly, so it can be chosen for c4.

Proof of Lemma 20
Call the vertices of c4 u0, ..., ul(c4)−1 in the positive

order they appear in c4.
Take an arbitrary vertex ui ∈ c4. The neighbours of

ui form a 6-cycle (call its vertices wi,0, ..., wi,5 in the
positive order they appear in the cycle) because they
are connected by the sides opposite to ui of the trian-
gles having ui as a vertex. Since not only ui, but also its
neighbours are regular vertices, they all have exactly 3
edges remaining and for any wi,j , these remaining ver-
tices are forming an interval in n1(wi,j). And from the
triangulatedness of G′, for any j, the rightmost of these
three neighbours of wi,j is the same as the leftmost one
of wi,j−1 (counted mod 6), while the central one is con-

nected with the other two. So if we name the common
neighbour of wi,j−1 and wi,j as ti,j−1,j and the common
neighbour of wi,j , ti,j−1,j and ti,j,j+1 as ti,j , then all the
drawn edges exist. So although the N2(ui) might not
be isomorphic with the graph in Figure 4 because of the
ti,j ’s and ti,j−1,j ’s not being regular (it is possible, that
some of the vertices listed above coincide or there exist
edges not shown in the drawing), a (spanning) subgraph
of it can be obtained as the result of a Ψi function pre-
serving incidence between vertices and edges and is also
preserving triangles and orientation. Also, once we have
decided the rotation of Ψi regarding the neighbours of
Ψ−1(ui), the function is unique.

Proof of Lemma 21
For all i (i = 0, ..., l(c4) − 1) let the Isbell colouring

we coloured Ψ−1i (N2(ui)) with be named χi.

Figure 23

Similarly as in Lemma 10, there is a unique function
preserving incidences between vertices and edges that
projects the graph in Figure 23 into N2(ui) ∩N2(ui+1)
counted mod l(c4) for i = 0, ..., l(c4) − 1. Thus, we
can suppose Ψi and Ψi+1 are the same on N2(ui) ∩
N2(ui+1). And since this graph contains a subgraph
that is isomorphic with that in Figure 5, from Lemma 11
we know that χi = χi+1. Thus, Ψ−1i (N2(ui)) is coloured
with the same Isbell colouring for all i = 0, ..., l(c4)− 1.
And since Ψi is an isomorphism on N1(ui), the N1(ui)
are also all coloured with the same Isbell colouring.

Now colour T with this colouring (call it χ0) and de-
fine a function g from ordered pairs of colours to direc-
tions in T : for any ordered pair of colours, take the or-
dered pairs of neighbouring vertices of T coloured with
these two colours. It is trivial from the definition of an
Isbell colouring that the direction of the vector connect-
ing the two members of such an ordered pair is uniquely
defined by the ordered pair of the colours. Let this di-
rection be the g of this pair. Also define a function h
from the ordered pairs of vertices in c4, which is defined
as the g of the ordered pair of colours belonging to the
particular vertices. And from N1(u1) being coloured
with χ0, we know that ∠h(ui−1, ui), h(ui, ui+1) = (2 −
(e(ui, int(c4))))· π3 , where int(c4) is defined as the side it
goes around in a positive direction). And from this and
l(c4)−1∑
i=0

∠(f(ui, ui+1), f(ui+1, ui+2)) = 0, we get that the

curvature of c4 is divisible by 6.
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