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Restricted-Weight Minimum-Dilation Spanners on Three Points
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Abstract

Given a planar point set P and a parameter L > 0, we
are interested in finding a Euclidean graph G, possibly
using Steiner vertices, that has total weight at most L
and minimizes the maximum dilation between any pair
of points p, q ∈ P . The dilation between two points
is the ratio between their graph distance and their Eu-
clidean distance.

While this problem can be approached using convex
optimization, the geometry of solutions is not yet well
understood. We investigate this problem for the case
P = {A,B,C} of three points. In this case the solution
consists of a triangle ∆A′B′C ′ and edges AA′, BB′ and
CC ′. We show that if A,B and C are the vertices of
an equilateral triangle ∆ABC, then ∆A′B′C ′ is equi-
lateral and centered in ∆ABC with its vertices on the
bisectors of ∠ABC,∠ACB,∠BAC. We further analyze
the solution for the case that ∆ABC is isosceles and L
is small.

1 Introduction

A Euclidean graph is a graph in which each vertex is
a point in Rn, and each edge (p, q) has weight equal
to the Euclidean distance |pq| between p and q. Let
G(V,E) be a Euclidean graph and let dG(p, q) denote
the shortest distance between p, q ∈ V in graph G, that
is, the smallest total weight of any path from p to q. Let

furthermore DG(p, q) = dG(p,q)
|pq| be the dilation between

p, q ∈ V over graph G. A spanner of a set of points
P ∈ Rn is then defined as a connected graph G = (V,E)
such that P ⊂ V . Depending on the context, one may
require V = P , or one may allow V to contain Steiner
points, that is, points that are not in P . The dilation
DG of the spanner is its maximum dilation over all pairs
of points from P , that is, DG = maxp,q∈P DG(p, q). A t-
spanner is a spanner G with dilation DG ≤ t. Spanners
and related algorithms have extensively been described
by Narasimhan and Smid [15].

Spanners form an important concept in computa-
tional geometry. Geometric spanners have various ap-
plications in for example the searching of metric spaces
[16], the distribution of messages in networks [10], and
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the creation of approximate distance oracles [11]. Gen-
erally, geometric spanners can be utilized to approxi-
mate more complex networks, allowing for more time-
efficient approximation algorithms. In the theoretical
analysis of such algorithms, dilation is often used to
prove bounds on the accuracy of said algorithms.

Spanners are frequently studied under further con-
straints regarding a variety of measures. Commonly
considered measures include the number of edges in the
spanner, diameter of the spanner and the total weight
of the spanner. The basic spanner problem concerns
minimizing the number of edges for a given desired dila-
tion [15]. The greedy spanner, as introduced by Althöfer
et al. [2], has been proven asymptotically optimal for the
basic spanner problem [14]. Further approximation al-
gorithms aim for asymptotic complexities of O(n) and
O(|MST |) for the number of edges and the weight re-
spectively [1, 3, 4, 5, 15]. An Integer Linear Program
formulation for the basic spanner problem, was given by
Sigurd and Zachariasen [17]. These results are for the
setting without Steiner vertices.

The knowledge on other settings is less extensive. In
this report, we investigate spanners with Steiner vertices
and constrained in weight and with minimal dilation.
The related Minimum-Weight Spanner Problem (with-
out Steiner points), considering the minimal weight for
a given dilation, has been proven to be NP-hard [7].
Generally, little is known about the exact structure of
optimal spanners. While minimizing the total weight of
the spanner, considering Steiner points naturally allows
for better results. Limited work is available on settings
allowing for Steiner points [6].

We study the optimal geometric structure of solu-
tions in a weight-restricted setting analytically. Specif-
ically, we consider the Restricted-Weight Minimum-
Dilation Spanner Problem with Steiner Points on ge-
ometric problem instances consisting of three points in
R2. Given a maximum weight L, where weight is de-
fined as the sum over the lengths of all edges, we thus
want to find the spanner over P ∪ S, for S a set of
Steiner points that is optimal, that is the spanner min-
imizing the maximum dilation between any two points
in P . Previous work on this problem by Kooijmans [13]
and Verstege [18] has focused on providing algorithms
for determining optimal spanners based on convex op-
timization.

We characterize the general topological structure of
optimal spanners for all problem instances with |P | = 3.
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For the case that the points in P are the vertices of an
equilateral triangle, we provide a complete geometric
description of the optimal spanner. Figure 1 contains
examples of optimal spanners for this case. Likewise, we
provide a description for the case of an isosceles triangle
and low maximum weight L.

Figure 1: Optimal spanners for P consisting of the ver-
tices of an equilateral triangle for increasing maximum
weight

Analyzing geometric properties of optimal spanners
serves the development of fast and well-performing ap-
proximation algorithms, by providing exploitable sub-
structures and generally furthering the understanding
of the problems at hand. As such, this work aims to aid
further research into weight-restricted geometric span-
ners with Steiner vertices.

2 General Triangle

Let P ⊂ R2, |P | = 3, such that the set forms a triangle.
Let these points be labeled A,B,C. As G = (P ∪ S,E)
must be a connected graph, there must exist paths be-
tween each pair of points, which potentially overlap. Let
α, β, γ : [0, 1] → R2 be curves describing the paths be-
tween A and B, B and C, and C and A respectively.
Let furthermore α[x, y] denote the subcurve from α(x)
to α(y) for 0 ≤ x ≤ y ≤ 1.

The proofs of Lemmas 1 to 5 are given in the ap-
pendix.

Lemma 1 An optimal spanner has a maximal dilation
of 1, or the total cost is maximal, thus

∑
e∈E |e| = L.

Lemma 2 In an optimal spanner, curves α, β, γ are in-
jective.

As a result of Lemma 2, we can denote α[x, y] by
α[X → Y ] for X = α(x), Y = α(y) with 0 ≤ x, y ≤ 1.
We furthermore denote the subcurve α[x, y] in reverse
direction by α[Y → X]. We similarly denote the sub-
curves α[X → Y ] and α[Y → X] excluding the end-
points by α(X → Y ) and α(Y → X) respectively.

Lemma 3 Let X,Y be points shared by curves α, β in
an optimal spanner. Then

α[X → Y ] = β[X → Y ]

Similarly for pairs α, γ and β, γ.

Thus, between two points shared by two curves, the
two curves consist of identical point sets.

Lemma 4 In an optimal spanner for L ≤ |AB| +
|AC| + |BC|, curves α, β, γ consist of straight line seg-
ments between A,B,C and additional Steiner points.

Lemma 5 In an optimal spanner, α, β, γ are contained
in the convex hull of A,B,C.

Lemma 6 An optimal spanner has the following form:
a triangle with each vertex connected to exactly one of
the points A,B,C.

Proof. Let curve α be given arbitrarily. We then con-
sider curves β, γ. As α(1) = β(0) = B, and by Lemma
3, there must exist a point B′ such that α[B → B′] =
β[B → B′] = α∩β. Analogously, there exist a point C ′

such that β[C → C ′] = γ[C → C ′] = β ∩ γ and a point
A′ such that α[A→ A′] = γ[A→ A′] = α ∩ γ.

If α(A′ → B′) ∩ β 6= ∅, let X ∈ α(A′ → B′) ∩ β.
By Lemma 2, α(A′ → B′) ∩ β(B → B′) = ∅. Then by
Lemma 3, α[X → B′] and β[X → B′] must coincide.
However, as in this case α[X → B] = β[X → B] and
B′ ∈ α(X → B), this contradicts with the definition of
B′. Therefore, α(A′ → B′) ∩ β = ∅. Similarly, α(A′ →
B′) ∩ γ = ∅.

Thus in any optimal spanner, α(A′ → B′) ∩ β =
α(A′ → B′) ∩ γ = ∅. Analogously, β(B′ → C ′) ∩ α =
β(B′ → C ′) ∩ γ = ∅ and γ(A′ → C ′) ∩ α = γ(A′ →
C ′) ∩ β = ∅.

We then, using Lemma 5, conclude that any optimal
spanner must have the topology as shown in Figure 2.
From Lemma 4 it follows that the curves between A and

A

B

C

α β

γ

Figure 2: Optimal topology as proven in Lemma 6

A′, B and B′, C and C ′, A′ and B′, B′ and C ′, A′ and
C ′, must be line segments. Thus the final form is as
shown in Figure 3. �
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α β

γ

Figure 3: Optimal form as proven in Lemma 6
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As used in the proof of Lemma 6, let A′ be the point
such that α[A → A′] = γ[A → A′] and |α[A → A′]|
maximal. Similarly, let B′ be the point such that α[B →
B′] = β[B → B′] and |β[B → B′]| maximal, and let C ′

be the point such that β[C → C ′] = γ[C → C ′] and
|γ[C → C ′]| maximal.

Lemma 7 In an optimal spanner, A′, B′, C ′ are dis-
tinct or A′ = B′ = C ′.

Proof. Assume that there exists an optimal spanner
where this is not the case. Without loss of generality,
assume that A′ = B′, and thus C ′ 6= A′ = B′. Then,
β[C,A′] = γ[C,A′]. Furthermore, by Lemma 6, and as
A′, C ′ are distinct, |γ[C,A′]| > |γ[C,C ′]|. But this con-
tradicts with the definition of C ′. Thus, our assumption
cannot hold. �

Lemma 8 In an optimal spanner, A′ = B′ = C ′ or
DG(A,B) = DG(A,C) = DG(B,C).

Proof. Assume DG(A,B) > DG(B,C) in an optimal
spanner. Then segment B′C ′ can be moved parallelly
inwards towards the center of triangle A′B′C ′ to re-
duce total cost, while not altering the maximal dila-
tion. Then, from Lemma 1, it follows that the span-
ner cannot be optimal. Thus, DG(A,B) ≤ DG(B,C)
must hold for an optimal spanner with A′, B′, C ′ dis-
tinct. Similarly, because of the ability to move segment
A′B′ parallelly inwards, DG(A,B) ≥ DG(B,C). By
analogous arguments, for a spanner to be optimal with
A′, B′, C ′ distinct, DG(A,B) = DG(A,C) = DG(B,C)
must hold. �

The dilation center X∗ of three points A,B,C is de-
fined as the point X that minimizes the dilation of the
graph with edges AX,BX and CX, where P = A,B,C.
We call G∗, the graph with edges AX∗, BX∗ and CX∗,
the minimum-dilation star. The point X∗ has been
entered into the Encyclopedia of Triangle Centers as
X(3513) [12]. It has been named the 1st Dilation Cen-
ter, and was contributed by Eppstein [8, 9], who also
observed that DG∗(A,B) = DG∗(B,C) = DG∗(A,C).
Let L∗ be the weight of G∗, that is, L∗ = |AX∗| +
|BX∗|+ |CX∗|.

Lemma 9 For any point M in the interior or on the
boundary of ∆ABC, |AM | + |BM | + |CM | < |AB| +
|AC|+ |BC|.

See appendix for the proof of Lemma 9.

Lemma 10 Let LMST be the weight of the minimum
Steiner tree over P . Then, for any weight L such that
LMST ≤ L ≤ L∗, any optimal spanner satisfies A′ =
B′ = C ′.

Proof. We first show that for L = L∗, G∗ is opti-
mal. Assume that there exists another spanner G with
cost at most L∗, and smaller maximum dilation. By
its definition, G∗ is optimal among spanners satisfying
A′ = B′ = C ′. Thus, in G, A′, B′, C ′ must be dis-
tinct. If, in G, X∗ lies outside or of ∆A′B′C ′, then one
of the curves α, β, γ, combined with the line segment
connecting its endpoints, encloses X∗. W.l.o.g. assume
this to be α. Therefore, |α| > |AX∗| + |BX∗|, and
DG(A,B) > DG∗(A,B). Thus, G would be suboptimal.
Therefore X∗ must lie on the boundary or in the inte-
rior of ∆A′B′C ′. But then, by Lemma 9, the cost of G
equals |AA′|+ |BB′|+ |CC ′|+ |A′B′|+ |B′C ′|+ |A′C ′| >
|AA′| + |BB′| + |CC ′| + |A′X∗| + |B′X∗| + |C ′X∗| ≥
|AX∗|+ |BX∗|+ |CX∗| = L∗. Thus, an optimal span-
ner G cannot exist. Therefore, for L = L∗, the optimal
spanner is the network with A′ = B′ = C ′ = X∗.

Now consider L < L∗. Suppose that there exists
a weight L < L∗ for which an optimal spanner G
exists with A′, B′, C ′ distinct. Then, by Lemma 8,
DG = DG(A,B) = DG(A,C) = DG(B,C). Since G∗

is optimal, and G has weight at most L < L∗, we must
haveDG ≥ DG∗ . InG∗, the total length of curves α, β, γ
equals DG∗ ·(|AB|+|BC|+|AC|). Since each edge in G∗

is contained in exactly two paths, this equals 2L∗. How-
ever, in G, edges A′B′, A′C ′, B′C ′ are only contained in
a single path. Thus, DG · (|AB| + |BC| + |AC|) < 2L.
Then, 2L

|AB|+|BC|+|AC| > DG ≥ DG∗ = 2L∗

|AB|+|BC|+|AC| .

This contradicts with the definition of G as an optimal
spanner with weight L < L∗. Therefore, A′ = B′ = C ′

for any optimal spanner with weight L ≤ L∗. �

Lemma 11 For any weight L such that L > L∗,
A′, B′, C ′ are distinct in any optimal spanner.

Proof. By its definition, the dilation star is optimal
among spanners satisfying A′ = B′ = C ′. However, by
Lemma 1, the dilation star cannot be optimal. As such,
no spanner satisfying A′ = B′ = C ′ is optimal. Then,
by Lemma 7, A′, B′, C ′ must be distinct in any optimal
spanner. �

3 Equilateral triangle

Lemma 12 In an optimal spanner for an equilateral
triangle, dG(A,B) = dG(A,C) = dG(B,C).

Proof. By Lemma 7, we only need to consider the
spanners in which A′, B′, C ′ all coincide or are all dis-
tinct. As by the definition of the equilateral trian-
gle |AB| = |AC| = |BC|, it suffices to show that
DG(A,B) = DG(A,C) = DG(B,C) for any optimal
spanner.

The case where A′ = B′ = C ′ holds then directly fol-
lows from Lemma 11 and the fact that the Fermat point
and the dilation center coincide for equilateral triangles.
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The case where A′, B′, C ′ are distinct directly follows
from Lemma 8. �

Lemma 13 Let for a triangle ∆ABC the sum of the
distances from the vertices to the Fermat point, |a′| +
|b′| + |c′|, be given. Then the sum of the length of the
triangle’s edges, |a| + |b| + |c|, is minimal for ∆ABC
equilateral.

A

B

Cb

c
a

a′

b′

c′
F

Figure 4: Illustration of notation used in the proof of
Lemma 13

Proof. Suppose one of the angles of ∆ABC is greater
than or equal to 120◦ in an optimal spanner. With-
out loss of generality, assume ∠ABC ≥ 120◦ be given.
Then, as the Fermat point of ∆ABC coincides with
point B, |a′|+ |b′|+ |c′| = |a|+ |c|. By the law of sines:

|c|
sin(∠ACB)

=
|a|

sin(∠BAC)
=

|b|
sin(∠ABC)

= d

where d is the diameter of the circumcircle. Then:

|b| = d · sin(∠ABC)

=
sin(∠ABC)(|a|+ |c|)

sin(∠BAC) + sin(∠ACB)

To find the minimum for |a|+|b|+|c| given |a′|+|b′|+|c′|,
we want to determine the minimum for |b|. As ∠ABC
and |a|+ |c| given, ∠BAC suffices to describe the entire
triangle. Thus:

d

d∠BAC
|b| = sin(∠ABC) · (|a|+ |c|)

· cos(180◦ − ∠BAC − ∠ABC)− cos(∠BAC)

(sin(∠BAC) + sin(180◦ − ∠BAC − ∠ABC))2

Equating to zero and solving using the constraints that
120◦ ≤ ∠ABC < 180◦ and that ∠ABC + ∠ACB +
∠BAC = 180◦, we find an extremum at ∠BAC =
∠ACB = 180◦−∠ABC

2 . As the derivative increases for
increasing ∠BAC, this must be a minimum. Thus,

|b| ≥
√
3
2 (|a| + |c|) =

√
3
2 (|a′| + |b′| + |c′|). Thus,

|a|+ |b|+ |c| ≥
√
3+2
2 (|a′|+ |b′|+ |c′|)

We compare this with ∆ABC equilateral:

|a|+ |b|+ |c| = 3|a| = 3
√

3|a′| =
√

3(|a′|+ |b′|+ |c′|)

Thus, for |a′|+ |b′|+ |c′| given, the sum of the length of
the triangle’s edges is smaller for an equilateral triangle
than for a triangle with an angle greater than 120◦.

Now assume ∠BAC ≤ 120◦, ∠ABC ≤ 120◦ and
∠ACB ≤ 120◦. Let S = |a′| + |b′| be given. As the
Fermat point F is also a Steiner point in the minimum
Steiner tree of ∆ABC, ∠AFB = ∠BFC = ∠AFC =
120◦. Then, by the law of cosines:

|c|2 = |a′|2 + |b′|2 − 2|a′||b′| cos(120◦)

= |a′|2 + |b′|2 + |a′||b′|
= |a′|2 + (S − |a′|)2 + |a′|(S − |a′|)
= |a′|2 + S2 − |a′|S

As S is fixed, |c|2 is solely dependent on |a′|. Therefore:

d|c|2

d|a′|
= 2|a′| − S

To find the minimum value for |c| given S, we equate
the derivative to zero.

2|a′| − S = 0

⇐⇒ 2|a′| = S

⇐⇒ 2|a′| = |a′|+ |b′|
⇐⇒ |a′| = |b′|

Thus, |c| is minimal for ∆ABF isosceles. Then from
simple trigonometry, utilizing ∠AFB = 120◦, it follows
that in this case, |c| =

√
3|a′| =

√
3S
2 . Thus, more gen-

erally, |c| ≥
√

3S
2 =

√
3 |a
′|+|b′|
2 , where |c| =

√
3 |a
′|+|b′|
2

is only achieved for |a′| = |b′|.
Similarly for the other edges, by symmetry:

|a| ≥
√

3

2
(|b′|+ |c′|)

|b| ≥
√

3

2
(|a′|+ |c′|)

Then, for the sum of the triangle’s edges:

|a|+ |b|+ |c| ≥
√

3

2
(|b′|+ |c′|) +

√
3

2
(|a′|+ |c′|)

+

√
3

2
(|a′|+ |b′)

=
√

3(|a′|+ |b′|+ |c′|)

As |a| =
√
3
2 (|b′|+ |c′|) ⇐⇒ |b′| = |c′|, and as this also

holds for |b|, |c| by symmetry, |a|+ |b|+ |c| =
√

3(|a′|+
|b′|+ |c′|) ⇐⇒ |a′| = |b′| = |c′|. Thus for |a′|+ |b′|+ |c′|
given, |a|+|b|+|c| is minimal for ∆ABC equilateral. �

Corollary 14 For the sum of the edge lengths of a tri-
angle ∆ABC, |a|+|b|+|c| given, the sum of the distances
from the vertices to the Fermat point, |a′|+ |b′|+ |c′| is
maximal for ∆ABC equilateral.
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Theorem 15 Let ∆ABC be an equilateral triangle.
Then for a given L ≥

√
3 · |AB|, the maximal dila-

tion is minimal for the following spanner: an equilateral
triangle centered in ∆ABC with its vertices connected
to the vertices A,B,C such that its vertices lie on the
line segments connecting A,B,C to the Fermat point of
∆ABC.

A

B

C A

B

CA

B

C A

B

CG1 G′
1 G2 G′

2

Figure 5: Graphs used in the proof of Theorem 15

Proof. W.l.o.g. assume |AB| = 1. Let G1 be an op-
timal spanner which does not have this structure. By
Lemma 6, it has the general form as depicted in Fig-
ure 5. Let s1 be the sum of the edge lengths of its
inner triangle, and t1 the sum of the lengths of the
segments connecting the vertices of the inner trian-
gle and A,B,C. Let D1 be its maximum dilation,
max(DG1(A,B), DG1(A,C), DG1(B,C)), and let L1 be
its total cost.

Then, L1 = s1 + t1. Furthermore, as ∆ABC equi-
lateral, |AB| = |AC| = |BC|, and as by Lemma 12
dG1

(A,B) = dG1
(A,C) = dG1

(B,C), it follows that
DG1

(A,B) = DG1
(A,C) = DG1

(B,C). Then:

3D1 = 3 ·max(DG1
(A,B), DG1

(A,C), DG1
(B,C))

= DG1
(A,B) +DG1

(A,C) +DG1
(B,C)

= s1 + 2t1

Now consider a spanner G2, with a centered equilateral
triangle with its vertices on the line segments connect-
ing A,B,C to the Fermat point of ∆ABC, where the
sum of the edge lengths of the inner triangle, s2, equals
s1. Let t2 be the sum of the distances between the in-
ner triangle’s vertices and A,B,C, L2 its total cost and
D2 its maximum dilation. Then, as G1 is an optimal
spanner, L2 ≥ L1 or D2 ≥ D1. Next, we consider our
previously found equations, utilizing s1 = s2:

L2 ≥ L1

⇐⇒ s2 + t2 ≥ s1 + t1

⇐⇒ t2 ≥ t1

D2 ≥ D1

⇐⇒ 3D2 ≥ 3D1

⇐⇒ s2 + 2t2 ≥ s1 + 2t1

⇐⇒ t2 ≥ t1

Thus, both statements are equivalent to t2 ≥ t1.

Next consider replacing the edges of the inner trian-
gles of G1 and G2 by three line segments between the
vertices of the inner triangle to its Fermat point. Let
these new spanners be G′1 and G′2. Let u1 and u2 be
the sum of the lengths of these three segments for G′1
and G′2 respectively. From the total cost of the minimal
Steiner tree of ∆ABC equaling

√
3·|AB|, it follows that

t1 + u1, t2 + u2 ≥
√

3 · |AB|.
First consider the case where the inner triangle of G1

is equilateral. Then u1 = u2, but as it is not centered
with its vertices on the line segments connecting A,B,C
to the Fermat point of ∆ABC, t1 +u1 >

√
3 · |AB|. By

construction, G′2 is the minimum Steiner tree for ∆ABC
and thus t2 + u2 =

√
3 · |AB|. But then, as u1 = u2,

t1 > t2.

Secondly, we consider the case where the inner tri-
angle of G1 is not equilateral. As G′2 is the minimum
Steiner tree for ∆ABC, t2 + u2 =

√
3 · |AB|. By Corol-

lary 14 u1 < u2. But then, as t1 + u1 ≥
√

3 · |AB|,
t1 > t2.

Thus in all cases t1 > t2. Thus G1 cannot be opti-
mal. �

Theorem 16 Let points A,B,C, the vertices of an
equilateral triangle, and

√
3 · |AB| ≤ L ≤ 3 · |AB|,

the maximum total cost, be given. Then, in an optimal
spanner,

A′ = A+
~AB + ~AC

| ~AB + ~AC|
· 3 · lo − L

3
√

3− 3
,

B′ = B +
~BA+ ~BC

| ~BA+ ~BC|
· 3 · lo − L

3
√

3− 3
,

C ′ = C +
~CA+ ~CB

| ~CA+ ~CB|
· 3 · lo − L

3
√

3− 3

with lo = |AB|.

See appendix for the proof of Theorem 16.

4 Isosceles triangle

Let ∆ABC be an isosceles triangle with |AB| = |BC|.
We analyze the case of small L, that is for L ≤ L∗, for
which we know by Lemma 10 that A′ = B′ = C ′.

Lemma 17 In a spanner with X := A′ = B′ = C ′, for
X at a given height with respect to base AC, |AX| +
|CX| is minimal for |AX| = |CX|.

See appendix for the proof of Lemma 17.

Corollary 18 In an optimal spanner, if X := A′ =
B′ = C ′, this point lies on the perpendicular bisector of
AC.
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Proof. Let G be a given optimal spanner, in which
|AX| 6= |CX|. Without loss of generality due to the
symmetry of an isosceles triangle, assume DG(A,B) ≥
DG(B,C). We will consider a spanner G∗, in which
|AX∗| = |CX∗|, but where |X∗X ′∗| equals |XX ′| in
G, where X ′ is the perpendicular projection of X on
AC. Then, by applying Lemma 17 and the Pythagorean
Theorem to |BX|, it follows that the total cost of G∗ is
smaller than the total cost of G.

We further show that the maximal dilation is re-
duced. As |AX| + |CX| minimal for |AX| = |CX|,
DG(A,C) > DG∗(A,C). By the Pythagorean Theo-
rem, |AX∗| < |AX| and |BX∗| < |BX|. But then,
DG(A,B) > DG∗(A,B) = DG∗(B,C). But then, G
cannot be optimal, and thus for any optimal spanner,
|AX| = |CX| must hold. �

Together with Lemma 1 and Lemma 9 this provides
a complete characterization of the spanner for the case
that LMST ≤ L ≤ L∗, where LMST is the weight of
the minimum Steiner tree and L∗ is the weight of the
minimum dilation star. We have not yet found similar
characterizations for larger L. Conjectures based on
computational experiments are included in Section 5.

5 Computational experimentation

To further investigate properties of optimal spanners,
we used an approximation algorithm to find such span-
ners for various problem instances. We chose not to use
exact algorithms like those developed by Kooijmans [13]
and Verstege [18] due to the simplicity of the considered
cases. Consequently, simple approximation algorithms,
such as the evolution-based approach we implemented,
give satisfactory results while avoiding error-prone com-
plex implementations.

In Figure 6, for several problem instances and for in-
creasing maximum weight, the computationally found
approximations are visualized. From the development
of the spanner for increasing maximum weight, we de-
duce multiple conjectures.

Conjecture 1 Let ∆ABC be an isosceles triangle with
|AB| = |BC|. Then the optimal spanner is symmetric
in the perpendicular bisector of AC.

Conjecture 2 Let ∆ABC be an isosceles triangle with
|AB| = |BC|. If ∠ABC ≤ 120◦, |AA′| > 0, |BB′| >
0, |CC ′| > 0 in the optimal spanner for |AF | + |BF | +
|CF | < L < |AB| + |AC| + |BC| with F the Fermat
point of ∆ABC.

Note that in Conjecture 2, the lower and upper bounds
on L are given by the cost of the minimum Steiner tree
and the complete graph respectively.

Figure 6: Approximately optimal spanners for various
problem instances of three points at varying maximum
weight

Conjecture 3 Let L∗ be the weight of the dila-
tion star. Then lim

L↓L∗
∠A′B′C ′ = lim

L↓L∗
∠A′C ′B′ =

lim
L↓L∗

∠B′A′C ′ = 60◦.

Conjecture 4 If in an optimal spanner
|AA′|, |BB′|, |CC ′| > 0, the lines AA′, BB′, CC ′

intersect in a single point.

6 Conclusion

The aim of our work was to analyze the geometry of
solutions to the Restricted-Weight Minimum-Dilation
Spanner Problem with Steiner Points. As presented, we
have determined the topology of solutions for instances
with |P | = 3. Additionally, we can fully describe the
optimal spanner if the points in P are the vertices of an
equilateral triangle, and partially (i.e. if the maximum
weight is small) if they form an isosceles triangle.

We leave multiple open problems. Proofs for optimal
spanners for isosceles triangles and larger weight are still
elusive. Similarly, descriptions of optimal spanners and
corresponding proofs for general triangles, quadrilater-
als (in particular the square), pentagons and further
polygons are yet to be found. In restricted settings, the
previous work by Kooijmans [13] and Verstege [18] pro-
vides insights into the topologies of solutions. Consider-
ing optimal spanners more generally, related problems
include solutions and their structure for other objec-
tive functions in weight-restricted settings, for example,
minimizing the diameter or the number of edges.
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Appendix

Proof for Lemma 1

Proof. Assume there exists an optimal spanner where the
maximal dilation is greater than 1, and the total cost is not
maximal. Let Lu < L be the total weight of the optimal
spanner.

Firstly, we will consider the case that a single path has
maximal dilation. W.l.o.g. assume that α is said path.
Thus, DG(A,B) > DG(B,C), DG(A,B) > DG(A,C).
Then, as DG(A,B) > 1, α is not a single line segment.
Then we can use the available weight L − Lu to decrease
dG(A,B), thereby decreasing DG(A,B). Thus the solution
is not optimal.

Next, we consider the case that two paths have maximal
dilation. W.l.o.g. assume that α, β are said paths. Thus,
DG(A,B) = DG(B,C) > DG(A,C). Then, as DG(A,B) =
DG(B,C) > 1, neither α nor β is a single line segment. Then
we can use half of the available weight L − Lu to decrease
dG(A,B) and half to decrease dG(B,C), thereby decreasing
DG(A,B), DG(B,C). Thus the solution is not optimal.

Finally, we consider the case where DG(A,B) =
DG(B,C) = DG(A,C). Then, as DG(A,B) = DG(B,C) =
DG(A,C) > 1, none of the paths consist of a single line
segments. Thus we can use a third of the available weight
L−Lu for decreasing dG(A,B), dG(B,C), dG(A,C) each re-
spectively, thereby decreasing the maximal dilation. Thus
the solution is not optimal.

Thus in all cases, the presumed solution is not opti-
mal. �

Proof for Lemma 2

Proof. W.l.o.g. we will consider α. Let α not be injective.
Then there thus exist 0 ≤ x < y ≤ 1 such that α(x) = α(y).

If α[x, y] \ (β ∪ γ) 6= ∅, redefining α to the concatenation
of α[0, x] and α[y, 1], will decrease the total cost while not
increasing the maximum dilation. Thus by Lemma 1, the
solution cannot be optimal.

Otherwise, (β ∪ γ) ∩ α[x, y] = α[x, y]. Then let bj =
inf{b : β(b) ∈ α[x, y]}, cj = inf{c : γ(c) ∈ α[x, y]} be
the indices at which β, γ join α[x, y] respectively, and let
bl = sup{b : β(b) ∈ α[x, y]}, cl = sup{c : γ(c) ∈ α[x, y]} be

the indices at which they leave α[x, y]. If |β[bj , bl]| > |α[x,y]|
2

,
we can redefine β[bj , bl] to α[x, y] \ β[bj , bl], resulting in

|β[bj , bl]| ≤ |α[x,y]|2
without increasing dilation. Analogously,

we can redefine γ[cj , cl] such that |γ[cj , cl]| ≤ |α[x,y]|2
. Then,

if α[x, y]\(β∪γ) 6= ∅ for the redefined curves, the modified so-
lution, and therefore the original solution, cannot be optimal
as previously described. Otherwise, |β[bj , bl]| = |γ[cj , cl]| =
|α[x,y]|

2
, and we can redefine β[bj , bl] to γ[cj , cl] without in-

creasing dilation. Then α[x, y] \ (β ∪ γ) 6= ∅, and thus the
modified solution, and therefore the original solution cannot
be optimal as previously shown.

Thus, in all cases the solution is not optimal, and we con-
clude that α must be injective in an optimal solution. �

Proof for Lemma 3

Proof. Let X,Y be points shared by curves α, β. Assume
that α[X → Y ] 6= β[X,Y ] in an optimal solution. Then
α[X,Y ] \ β[X,Y ] 6= ∅ and β[X,Y ] \ α[X,Y ] 6= ∅.

Suppose that |α[X,Y ] \ β[X,Y ]| < |β[X,Y ] \ α[X,Y ]|.
Then we can redefine β[X,Y ] to α[X,Y ] without increas-
ing dilation, while maintaining or lowering the total cost.
The cost is only maintained if β[X,Y ] \ α[X,Y ] ⊆ γ. Then,
γ ∩ (β[X,Y ] \ α[X,Y ]) can also be redefined to segments
of α[X,Y ] without increasing the dilation, while reduc-
ing the cost. By Lemma 1, the modified solution, and
therefore the original solution, cannot be optimal. Thus,
|α[X,Y ] \ β[X,Y ]| ≥ |β[X,Y ] \ α[X,Y ]|. Analogously,
|α[X,Y ] \ β[X,Y ]| ≤ |β[X,Y ] \ α[X,Y ]|.

Thus, |α[X,Y ] \ β[X,Y ]| = |β[X,Y ] \ α[X,Y ]|. Then,
as previously shown, we can redefine β[X,Y ] \ α[X,Y ], and
possibly γ∩(β[X,Y ]\α[X,Y ]), to α[X,Y ] to reduce the total
cost without increasing the dilation. As such, by Lemma 1,
the modified solution, and therefore the original solution,
cannot be optimal.

Analogously for pairs α, γ and β, γ. �

Proof of Lemma 4

Proof. If L = |AB|+ |AC|+ |BC|, the optimal solution is
given by the complete graph, which consists of straight line
segments.

If L < |AB| + |AC| + |BC|, w.l.o.g. let us consider α.
Let α contain a non-straight arc in an optimal solution. Let
α[x, y] be such an arc, with 0 < x < y < 1.

If α[x, y] ∩ β = α[x, y] ∩ γ = ∅, replacing α[x, y] with
a direct line segment decreases cost, while not increasing
dilation. By Lemma 1, the modified solution, and therefore
the original solution cannot be optimal.

If α[x, y] ∩ β ∩ γ = α[x, y], α, β, γ can all be redefined to
a direct line segment to decrease cost, while not increasing
dilation. By Lemma 1, the modified solution, and therefore
the original solution cannot be optimal.

If α[x, y]∩β = α[x, y] and α[x, y]∩γ = ∅, both α, γ can be
redefined to a direct line segment to decrease the cost, while
not increasing dilation. By Lemma 1, the modified solution,
and therefore the original solution cannot be optimal. By
similar argument, the same holds for α[x, y] ∩ β = ∅ and
α[x, y] ∩ γ = α[x, y].

Otherwise, we can introduce z1 < z2 <
. . . < zn, with z1 > x, zn < y, such that
α[x, z1], α[z1, z2], α[z2, z3], . . . , α[zn−1, zn], α[zn, y] all
either reflect one of the previous cases or are a straight line
segment.

Thus, in all cases, non-straight arcs result in a non-
optimal solution. �

Proof for Lemma 5

Proof. By Lemma 4, we can consider the solution to be a
network over a set of points V , consisting of the triangle’s
vertices and additional Steiner points.

Let ha(p) for p ∈ V denote the distance from p to the line
BC if the line segment connecting p and A intersects the
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line BC, and the additive inverse of the distance from p to
the line BC otherwise.

Assume that there exists a point q such that ha(q) pos-
itive in an optimal solution. Then let q1, q2, . . . , qn ∈ V
denote the points with ha(q1) = ha(q2) = . . . = ha(qn) =
maxp∈V ha(p). Now move all qi for 1 ≤ i ≤ n perpendicular
to the line BC by ε towards said line, for ε sufficiently small.
Then any line segment between qi, qj for 1 ≤ i < j ≤ n, is
not changed in length. For segments between p′, q′, where
ha(p′) < ha(q′) = maxp∈V ha(p), by the Pythagorean Theo-
rem, the length is reduced. All remaining segments are not
affected.

As ha(q) > 0, and as each point in V is (in)directly con-
nected to A,B,C, there must exist p′, q′ such that ha(p′) <
ha(q′) = maxp∈V ha(p) and p′, q′ directly connected. Thus,
there must exist a segment which has been shortened, while
none of the segments has increased in length. As such, the
modified solution has a lower cost. By Lemma 1, the mod-
ified solution can thus not be optimal. Furthermore, as the
maximum dilation has thus also not increased, the original
solution can also not be optimal. As such, our assumption
that there exists a point q such that ha(q) > 0 cannot hold.

Analogously, an optimal solution cannot contain a point
q such that the line segment connecting q and B intersects
the line AC, or such that the line segment connecting q and
C intersects the line AB. �

Proof for Lemma 9

Proof. For M in the interior of ∆ABC, we trivially have
|AM | + |MB| < |AC| + |CB|. Similarly, |BM | + |MC| <
|BA|+ |AC| and |AM |+ |MC| < |AB|+ |BC|. Adding these
equations gives 2·(|AM |+|BM |+|CM |) < 2·(|AB|+|BC|+
|AC|).

For M on the boundary of ∆ABC, |AM |+|MB| ≥ |AC|+
|CB| if and only ifM = C. Similarly, |BM |+|MC| ≥ |BA|+
|AC| if and only if M = A and |AM |+ |MC| ≥ |AB|+ |BC|
if and only if M = B. Thus, as A,B,C are distinct, for
any point on the boundary, 2 · (|AM | + |BM | + |CM |) <
2 · (|AB|+ |BC|+ |AC|) must hold. �

Proof for Theorem 16

Proof. Let points A,B,C, the vertices of an equilateral tri-
angle, and L, the maximum total cost, be given. We will
now construct A′, B′, C′. Let lo := |AB| = |AC| = |BC|.
Furthermore, let lc := |AA′|, and let li := |A′B′|. Then, by
Theorem 15, lc = |AA′| = |BB′| = |CC′| and li = |A′B′| =
|A′C′| = |B′C′|.

Then, as by Theorem 15 ∠A′AC = 30◦, lo = 2 · lc ·
cos(30◦) + li. From this equation, it follows that li =
lo−2·lc ·cos(30◦). Furthermore, by Lemma 1, 3·lc+3·li = L.
Then we can solve for lc:

3 · lc + 3 · li = L

⇐⇒ 3 · lo − 6 · lc · cos(30◦) + 3 · lc = L

⇐⇒ 3 · lo − 3
√

3 · lc + 3 · lc = L

⇐⇒ (3− 3
√

3) · lc = L− 3 · lo

⇐⇒ lc =
3 · lo − L
3
√

3− 3

Finally, as by Theorem 15 ∠A′AB = ∠A′AC and |AB| =
|AC|:

A′ = A+
~AB + ~AC

| ~AB + ~AC|
· 3 · lo − L

3
√

3− 3

And by symmetry analogously for B′ and C′. �

Proof for Lemma 17

Proof. Define X ′ as the perpendicular projection of X on
AC, such that ∠AX ′X = 90◦, which is in any case valid by
Lemma 5. Now let |XX ′| be fixed. Then:

|AX|+ |CX| =
√
|AX ′|2 + |XX ′|2 +

√
|CX ′|2 + |XX ′|2

=
√
|AX ′|2 + |XX ′|2

+
√

(|AC| − |AX ′|)2 + |XX ′|2

To find the minimum, we differentiate with respect to |AX ′|:

d(|AX|+ |CX|)
d|AX ′| =

|AX ′|√
|AX ′|2 + |XX ′|2

− |AC| − |AX ′|√
(|AC| − |AX ′|)2 + |XX ′|2

=
|AX ′|√

|AX ′|2 + |XX ′|2

− |CX ′|√
|CX ′|2 + |XX ′|2

Setting the derivative equal to zero, we find:

d(|AX|+ |CX|)
d|AX ′| = 0

⇐⇒ |AX ′|√
|AX ′|2 + |XX ′|2

=
|CX ′|√

|CX ′|2 + |XX ′|2

⇐⇒ |AX ′|2(|CX ′|2 + |XX ′|2) = |CX ′|2(|AX ′|2 + |XX ′|2)

⇐⇒ |AX ′|2|XX ′|2 = |CX ′|2|XX ′|2

⇐⇒ |AX ′|2 = |CX ′|2

And as lengths of line segments are non-negative, |AX ′| =
|CX ′|. But then, by the Pythagorean Theorem, |AX| =
|CX|. �
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