
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

If You Must Choose Among Your Children, Pick the Right One

Brittany Terese Fasy†∗ Benjamin Holmgren† Bradley McCoy† David L. Millman†

Abstract

Given a simplicial complex K and an injective func-
tion f from the vertices of K to R, we consider al-
gorithms that extend f to a discrete Morse function
on K. We show that an algorithm of King, Knudson
and Mramor can be described on the directed Hasse di-
agram of K. Our description has a faster runtime for
high dimensional data with no increase in space.

1 Introduction

Milnor’s classical Morse theory provides tools for inves-
tigating the topology of smooth manifolds [16]. In [9],
Forman showed that many of the tools for continuous
functions can be applied in the discrete setting. Infer-
ences about the topology of a CW complex can be made
from the number of critical cells in a Morse function on
the complex.

Given a Morse function one can interpret the func-
tion in many ways. Switching interpretations is often
revealing. In this paper, we think of a discrete Morse
function in three different ways. Algebraically, a Morse
function is a function from the faces of a complex to the
real numbers, subject to certain inequalities. Topologi-
cally, a Morse function is a pairing of the faces such that
the removal of any pair does not change the topology of
the complex. Combinatorially, a Morse function is an
acyclic matching in the Hasse diagram of the complex,
where unmatched faces correspond to critical cells.

Discrete Morse theory can be combined with persis-
tent homology to analyze data, see [1, 2, 4, 5, 7, 8, 13].
When dealing with data, we have the additional con-
straint that vertices have function values assigned. For
complexes without any preassigned function values,
Joswig and Pfetsch showed that finding a Morse func-
tion with a minimum number of critical cells is NP-Hard
[12]. Algorithms that find Morse functions with rela-
tively few critical cells have been explored in [11,15,17].

In this work, we consider the algorithm Extract, Al-
gorithm 1, given in [13]. Extract takes as input a sim-
plicial complex and an injective function from the ver-
tices to the reals, and returns a discrete Morse function,
giving topological information about the complex. We
∗Department of Mathematical Sciences, Montana State U.
†School of Computing, Montana State U.

{brittany.fasy, bradleymccoy, david.millman}@montana.edu

benjamin.holmgren@student.montana.edu

show that a subalgorithm of Extract, ExtractRaw
can be simplified by considering the directed Hasse dia-
gram. This simplification leads to an improved runtime
and no change in space. The paper is organized as fol-
lows, in Section 2, we provide the definitions that will
be used in the paper. In Section 3, we describe Ex-
tract and analyze the runtime, then, in Section 4, we
give our reformulation and show that the runtime is im-
proved from Ω(n2 log n) to O(dn) where n is the number
of cells and d is the dimension of K.

2 Background

In this section, we provide definitions, notation, and
primitive operations used throughout the paper. For a
general overview of discrete Morse theory see [14, 19],
note that both texts provide a description of Extract
originally given in [13]. Extract is the starting point
for this work.

In what follows, we adapt the notation of Edelsbrun-
ner and Harer [6] to the definitions of Forman [10]. Here,
we work with simplicial complexes, but the results hold
for CW complexes. Let K be a simplicial complex with
n simplices. For i ∈ N, denote the i-simplices of K
as Ki, the number of simplices in Ki as ni, and the
dimension of the highest dimensional simplex of K as
dim(K).

Let σ ∈ K, denote the dimension of σ as dim(σ).
Let p = dim(σ) and {v0, v1, · · · , vp} ⊆ K0 be the zero-
simplices of σ, then we say σ = [v0, v1, · · · , vp]. If τ ∈ K
is disjoint from σ, then we can define the join of σ and
τ to be the (dim(σ) + dim(τ) + 1)-simplex that consists
of the union of the vertices in σ and τ , denoted σ ∗ τ .
We write σ ≺ τ if σ is a proper face of τ .

Let p ∈ N and consider simplices σu, σv ∈ Kp, with
σu = [u0, u1, . . . , up] and σv = [v0, v1, . . . , vp]. Let f0 :
K0 → R be an injective function. Without loss of gen-
erality, assume that the zero-simplices of σu and σv are
sorted by function value, that is, we have f0(vi) < f0(vj)
when 0 ≤ i < j ≤ p, similarly for σu. We say that σu is
lexicographically smaller than σv, denoted σu <lex σv, if
the vector 〈f0(up), f0(up−1), . . . , f0(u0)〉 is lexicograph-
ically smaller than 〈f0(vp), f0(vp−1), . . . , f0(v0)〉.

The star of v in K, denoted starK(v), is the set of all
simplices of K containing v. The closed star of v in K,
denoted starK(v), is the closure of starK(v). The link of
v in K, is denoted as linkK(v) := starK(v) \ starK(v).
We define the lower link of v, denoted lowerlinkK(v),

32nd Canadian Conference on Computational Geometry, 2020

to be the maximal subcomplex of linkK(v) whose zero-
simplices have function value less than f0(v); the lower
link can be computed in O(n) time.

We provide the definition of a Morse function, modi-
fied from Forman [10].

Definition 1 (Morse Function) A function f : K →
R is a discrete Morse function, if for every σ ∈ K, the
following two conditions hold:

1. |{β � σ|f(β) ≤ f(σ)}| ≤ 1,

2. |{γ ≺ σ|f(γ) ≥ f(σ)}| ≤ 1.

An intuitive definition is given in [19], “the function
generally increases as you increase the dimension of the
simplices. But we allow at most one exception per sim-
plex." Let f : K → R be a discrete Morse function. A
simplex σ ∈ K is critical if the following two conditions
hold:

1. |{β � σ|f(β) ≤ f(σ)}| = 0,

2. |{γ ≺ σ|f(γ) ≥ f(σ)}| = 0.

Simplices that are not critical are called regular.
Given a discrete Morse function f on a simplicial com-

plex K, we define the induced gradient vector field, or
GVF, for short, as {(σ, τ) : σ ≺ τ, f(σ) ≥ f(τ)}. Note
that σ is a codimension one face of τ . We can gain
some intuition for this definition by drawing arrows on
the simplicial complex as follows. If σ is regular, a codi-
mension one face of τ , and f(τ) ≤ f(σ), then we draw
an arrow from σ to τ . Constructing a GVF for a simpli-
cial complex is as powerful as having a discrete Morse
function, and is the goal of both Extract and our pro-
posed Algorithm 2.

Next, we define two functions that are helpful when
constructing a GVF. The rightmost face of σ, de-
noted ρ(σ), is the face of σ with maximum lexicographic
value. The leftmost coface of σ, denoted `(σ), is the di-
mension one coface of σ with minimum lexicographic
value. We say σ is a left-right parent and we call ρ(σ)
a left-right child if ` ◦ ρ(σ) = σ.

In [10], Forman showed that each simplex in K is
exclusively a tail, head, or unmatched. Moreover, the
unmatched simplices are critical. Thus, we can partition
the simplices of K into heads H, tails T , and critical
simplices C, and encode the GVF as a bijection m :
T → H. That is, we can represent the GVF for f
as the unique tuple (H,T,C,m). We will use this
representation throughout our algorithms.

Note that a GVF is a particularly useful construc-
tion. It provides a way to reduce the size of a simplicial
complex without changing the topology (by cancelling
matched pairs), which is constructive for preprocessing
large simplicial complexes. See [4, 17] for examples.

We define a consistent GVF as follows:

Definition 2 (Consistent GVF) Let K be a simpli-
cial complex, and let f0 : K0 → R be injective. Then,
we say that a gradient vector field (H,T,C,m) is con-
sistent with f0 if, for all ε > 0, there exists a discrete
Morse function f : K → R such that

(a) (H,T,C,m) is the GVF corresponding to f .

(b) f |K0 = f0.

(c) |f(σ)−maxv∈σ f0(v)| ≤ ε.

Let (H,T,C,m) be a GVF. Then, for r, p ∈ N, a
gradient path1 is a sequence of simplices in K:

Γ = {σ−1, τ0, σ0, τ1, σ1, . . . , τr, σr, τr+1}

beginning and ending with critical simplices σ−1 ∈
Kp+1 and τr+1 ∈ Kp such that for 0 ≤ i < r, τi ∈ Kp,
σi ∈ Kp+1, m(τi) = σi, and τi � σi+1 6= σi. We call a
path nontrivial if r > 0.

3 A Discrete Morse Extension of f0 : K0 → R

In this section, we give a description of Algo-
rithm 1 (Extract), originally from [13]. This algo-
rithm takes a simplicial complex K, an injective func-
tion f0 : K0 → R, and a threshold that ignores pairings
with small persistence p ≥ 0; and returns a GVF on K
that is consistent with f0.

Algorithm 1 [13] Extract

Input: A simplicial complex K, injective function
f0 : K0 → R, and p ≥ 0

Output: a GVF consistent with f0

1: γ ← ExtractRaw(K, f0) . Algorithm 3
2: for j = 1, 2, . . . ,dim(K) do
3: γ ← ExtractCancel(K,h, p, j, γ) . Alg. 4
4: return γ

Extract uses two subroutines: First, in Line 1 of Al-
gorithm 1 ExtractRaw (given in Algorithm 3) is used
to generate an initial GVF on K consistent with f0. Let
(H0, T0, C0, r0) be this initial GVF. Then, for each di-
mension (j = 1 through dim(K)), the algorithm makes
a call to ExtractCancel (given in Algorithm 4) that
augments an existing gradient path to remove simplices
from C0 in pairs. For more details, see Appendix A.1.

In the next section, we provide a simpler and faster
algorithm to replace ExtractRaw, which dominates
the runtime of Extract when p = 0 (and in practice,
when p is very small). We conclude this section with
properties of the output from ExtractRaw:

1There is a slight discrepancy between the definition of For-
man [10] and KKM [13]. In particular, Forman’s definition states
the head and the tail of the path are simplices of the same dimen-
sion. On the other hand, KKM’s usage in the ExtractCancel
algorithm expects that the head and tail are different dimensions.
Here, we state the definition implied by the usage in KKM.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Theorem 3 (Properies of ExtractRaw) Let K
be a simplicial complex, let f0 : K0 → R be an injec-
tive function, and suppose (H,T,C,m) is the output of
ExtractRaw(K, f0). Let ε > 0. Then, there exists a
discrete Morse function f : K → R such that the follow-
ing hold:

(i) (H,T,C,m) is a GVF consistent with f0.

(ii) Let σ ∈ K. Then, σ ∈ H if and only if σ is a
left-right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

(iv) The runtime of ExtractRaw is Ω(n2 log n).

4 A Faster Algorithm for ExtractRaw

The main contribution of this paper is Extrac-
tRightChild, which we show is a simplified version
of ExtractRaw that has the same output with an im-
proved runtime. This section provides a description of
the algorithm, and a proof of the equivalence with Ex-
tractRaw.

4.1 Hasse Diagram Data Structure

We assume that KKM [13] represent K in a standard
Hasse diagram data structure H, which can be encoded
as an adjacency list representation for a graph. Each
simplex σ ∈ K is represented by a node in H. We abuse
notation and write σ ∈ H as the corresponding node.
Two simplices σ, τ ∈ H are connected by an edge from
σ to τ if σ is a codimension one face of τ . For a node
σ ∈ H, we partition its edges into two sets, up(σ) and
down(σ) as the edges in which σ is a face or coface,
respectively.

For p ∈ N, we denote the nodes of H corresponding to
the p-simplices of K as Hp and we store each Hp in its
own set that can be accessed in O(1) time. Note that
there is no requirement about the ordering of the edges
or the nodes in each Hp. See Figure 1 for an example
of the data structure.

3

4

2

6 5

1

7

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

Figure 1: Left: A simplicial complex with function val-
ues assigned to the vertices. Right: The Hasse diagram
of the simplicial complex.

For our algorithm, we decorate each node of H with
additional data. For clarity, we denote the decorated

data data structure as H∗. Next, we describe the ad-
ditional data stored in each node and how to initial-
ize the data. Consider σ ∈ H∗p and define f̃(σ) :=

maxv∈σ f0(v). Each node stores f̃(σ), the rightmost
child ρ(σ) and leftmost parent `(σ).

Next, we describe how to initialize the data and sum-
marize with the following lemma.

Lemma 4 (Hasse decoration) Given a simplicial
complex K with n simplices and dim(K) = d. The dec-
orated Hasse diagram uses O(n) additional space. We
can decorate the Hasse digram K in O(dn) time.

Proof. We begin by analyzing the space complexity.
For each node, we store a constant amount of additional
data. Thus, the decorated Hasse diagram uses O(n)
additional space.

Next, we analyze the time complexity. To decorate H
for each node σ ∈ H, we must compute f̃(σ), ρ(σ), and
`(σ). Let p = dim(σ). We proceed in three steps.

First we compute f̃ . In general, computing f̃(σ)
takes O(p) time, since there may be no more than p
vertices which compose any σ. Let τ1 and τ2 be dis-
tinct codimension one faces of σ. Observe that f̃(σ) =
max(f̃(τ1), f̃(τ2)). Thus, if we know the function values
for Hp−1, we can compute and store all function values
of all nodes in H in Θ(n) time.

Second we compute ρ(σ) by brute force. We iterate
over all edges in down(σ) to find its largest face under
lexicographic ordering. Since a p-simplex σ has p +
1 down edges, computing ρ(σ) for σ takes O(p) time.
As dim(K) = d, and there are n nodes, we can then
compute ρ for all nodes in O(dn) time.

Third, we compute `, also by brute force. We iterate
over all edges in up(σ) to find its smallest lexicograph-
ical coface. While we cannot bound up(σ) as easily as
down(σ), we do know that when computing ` we can
charge each edge in the Hasse diagram for one compar-
ison. Observe that when computing ρ, we can similarly
charge each comparison to an edge. Then, from com-
puting ρ, we know the total number of comparisons is
O(dn). Thus, the total number of comparisons for com-
puting ` is also O(dn).

As each step takes O(dn) time, decorating H takes
O(dn) time. �

4.2 Algorithm Description

Next, we describe the main algorithm. Given a
simplicial complex K (represented as a Hasse dia-
gram), and an injective function f0 : K0 → R,
ExtractRightChild computes a GVF consistent
with f0.

Algorithm 2 has three main steps. First, we create
a decorated Hasse diagram. Second, we process each
level of the Hasse diagram from top to bottom. For

32nd Canadian Conference on Computational Geometry, 2020

Algorithm 2 ExtractRightChild

Input: simp. complx. K, injective fcn. f0 : K0 → R
Output: a GVF consistent with f0

1: H∗ ← decorate the Hasse diagram of K . Lem. 4|
2: T ← ∅, H ← ∅, C ← ∅, m← ∅
3: for i = dim(K) to 1 do
4: for σ ∈ H∗i do
5: if σ is assigned then
6: continue
7: if σ is a left-right parent then
8: Add ρ(σ) to T ; Add σ to H
9: Add (ρ(σ), σ) to m

10: Mark σ and ρ(σ) as assigned
11: else
12: Add σ to C
13: Mark σ as assigned
14: Add any unassigned zero-simplices to C
15: return (T,H,C, r)

each unassigned simplex, we check for a left-right parent
node, and use the results to build up a GVF. Third, we
process unassigned zero-simplices. See Figure 2 for an
example.

4.3 Analysis of ExtractRightChild

For the remainder of this section, we prove that Al-
gorithm 2 (ExtractRightChild) is equivalent to
and faster than Algorithm 3 (ExtractRaw). For
the following lemmas, let K be a simplicial com-
plex, let f0 : K0 → R be an injective function,
and let (H,T,C,m) be the output of Extrac-
tRightChild(K,f0).

First, we show that (H,T,C,m) is a partition of K.

Lemma 5 (Partition) The sets H, T , and C parti-
tion K.

Proof. By Line 3 and Line 4 of Algorithm 2, Extrac-
tRightChild iterates over all σd ∈ K with d > 0 once.
Each σ is either assigned or unassigned. If σ is unas-
signed, there are two options; σ may be a left-right par-
ent, or it may not be. If σ is a left-right parent, Line 8
ensures that σ is put into H. Otherwise, Line 12 en-
sures that σ is put into C. If σ is assigned, then σ
was assigned to T in Line 8. Thus, every σd ∈ K with
d > 0 must be assigned to exactly one of H,T, or C.
Then, every σ0 is again either assigned or unassigned.
If assigned, σ0 ∈ T . If unassigned, σ0 is added to C in
Line 14. Thus, every σ ∈ K is assigned one of H,T, or
C, making H,T, and C partition K. �

We will show that (H,T,C,m) satisfies (i), (ii), and
(iii) of Theorem 3. Later in this section, we show that
any GVF with these properties is unique.

First, we show (iii) and one direction of (ii).

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(a) The simplex [3, 4, 6] is a left-right parent
because ` ◦ ρ([3, 4, 6]) = `(4, 6) = [3, 4, 6].
The algorithm adds [3, 4, 6] to H and [4, 6]
to T .

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(b) The simplex [2, 5, 7] is also a left-right
parent. The algorithm adds [2, 5, 7] to H
and [5, 7] to T.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(c) Both [3, 4] and [1, 5] are left-right par-
ents. The simplex [2, 5] is not a left-right
parent because ` ◦ ρ([2, 5]) = [1, 5] 6= [2, 5].
The algorithm adds [2, 5] to C.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(d) The loop in Line 3 is complete.

[2,5,7][3,4,6]

[3,4] [1,5] [1,6] [3,6] [4,7] [5,7]

[1] [6] [7][4][3][2]

[2,5] [2,7][4,6]

[5]

(e) The algorithm adds unassigned vertices
to C.

Figure 2: Here we see a visualization of Algorithm 2,
ExtractRightChild on the complex shown in Fig-
ure 1. Algorithm 2 partitions the nodes of the Hasse
diagram into three sets, H,T and C. Elements of H are
represented by blue rectangles, elements of T by green
pentagons and elements of C by red hexagons.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Lemma 6 (Child Heads are Parents) Let σ ∈ H.
Then, σ is a left-right parent and m(ρ(σ)) = σ.

Proof. Recall that H is the second output of Extrac-
tRightChild(K,f0), given in Algorithm 2. As Line 8
is the only step in which simplices are added to H and
is within an if statement that checks if σ is a left-right
parent, σ must be a left-right parent. Also within the
if statement, Line 9 adds (ρ(σ), σ) to m, which means
that m(ρ(σ)) = σ. �

Now we show the reverse direction of (ii).

Lemma 7 (Child Parents are Heads) Let σ ∈ K.
If σ is a left-right parent, then σ ∈ H.

Proof. Recall that in order for σ to be a left-right par-
ent, we must have `(ρ(σ)) = σ. Now, we consider two
cases. For the first case, suppose σ ∈ C. Then σ is
added to C in Line 12 of Algorithm 2 when ρ(σ) must
already be assigned to h <lex σ. So, `(ρ(σ)) = h 6= σ
and σ is not a left-right parent.

For the second case, suppose σ = [v0, v1, . . . , vd] ∈ T .
Then σ is added to T in Line 8 of Algorithm 2 where σ =
ρ(h) for some h = [v−1, v0, . . . , vd] ∈ H with f0(v−1) <
f0(v0). Notice that ξ = [v−1, v1, v2, . . . , vd] is a face of
h and ξ <lex σ. Then, `(ρ(σ)) = `([v1, . . . , vd]) ≤lex
[v−1, v1, v2, . . . , vd] <lex [v0, v1, . . . , vd] = σ and σ is not
a left-right parent.

Thus, if σ is a left-right parent, then σ ∈ H.
�

To see (H,T,C,m) satisfies (i) we have the following
lemma:

Lemma 8 (Consistency) The tuple (H,T,C,m) is a
gradient vector field consistent with f0.

Proof. Let ε > 0 and d = dim(K). Let (H,T,C,m) =
ExtractRightChild(K,f0). We define

δ := min{ε, min
v,w∈K0

|f(v)− f(w)|}.

We define f : K → R recursively as follows: for all
vertices v ∈ K0, define f(v) := f0(v). Now, assume
that f is defined on the i-simplices, for some i ≥ 0. For
each σ ∈ Ki+1, we initially assign f(σ) = maxτ≺σ f(τ),
then we update:

f(σ) = f(σ) +

{
−21−2iδ if σ is a left-right parent;
21−2iδ otherwise,

(1)
where j is the index of σ in the lexicographic ordering
of all simplices. We make one final update:

f(σ) = f(σ) +

{
2−2iδ if σ is a left-right child;
0 otherwise.

(2)

We need to show that (H,T,C,m) and f satisfy the
three properties in Definition 2.

First, we show Part (a) of Definition 2 holds for f as
defined above (that (H,T,C,m) is the GVF correspond-
ing to f). Let (H ′, T ′, C ′,m′) be the GVF correspond-
ing to f . Since H, T , C partitions K by Lemma 5, it
suffices to show that m is a bijection and m = m′. The
only time that simplices are added to H or T happens
directly alongside when pairs are added to m in lines 8
and 9, forcing that m must be a match.

Let (τ, σ) ∈ m. Let i = dim(σ). By Lemma 7, σ is a
left-right parent and τ = ρ(σ), which means that (τ, σ)
is a left-right pair. We follow the computation of f(σ).
Since (τ, σ) is a left-right pair, τ is the rightmost face
of σ, which means f(σ) is initialized to f(τ). Since σ
is a left-right parent, f(σ) is updated by (1) to f(σ) =
f(σ)− 21−2iδ. Since σ is not a left-right child, nothing
changes in (2). Thus, f(σ) < f(τ). Next, let τ ′ ≺ σ
such that τ ′ 6= τ and dim(τ ′) = i − 1. We follow the
computation of f(τ ′). Since τ is the only face of σ that
is a left-right child, for any other τ ′ ≺ σ, (2), adds
zero to the definition of f(τ ′). Recalling that (2) adds
2−2(i−1)δ to the definition of f(τ), we find that f(τ) ≥
f(τ ′) + 2−2(i−1)δ, and

f(σ) = f(τ)−21−2iδ ≥ f(τ ′)+2−2(i−1)δ−21−2iδ ≥ f(τ ′).

Because σ may be any arbitrary left-right parent, we
can guarantee that the above inequality is valid for any
(σ, τ) ∈ m when related to any other faces of σ. Thus,
f is discrete Morse, since it is impossible for f to violate
the inequality given in Definition 1.

Since f(τ) > f(σ) and f is a discrete Morse function,
we obtain (τ, σ) ∈ m′. Each of these statements are
biconditional, so we have shown that m = m′.

Part (b) of Definition 2 (f |K0
= f0) holds trivially.

Finally, we show Part (c) of Definition 2 holds (that
|f(σ)−maxv∈σ f0(v)| ≤ ε). By construction,

|f(σ −max
v∈σ

f0(v)| ≤

(
d∑
i=1

2−i

)
δ = (1− 2−d)δ < ε.

�

Properties (i), (ii), and (iii) are quite restrictive. In
fact, they uniquely determine a GVF, as we now show.

Theorem 9 (Unique GVF) Let K be a simplicial
complex and let f0 : K0 → R be an injective function.
There is exactly one gradient vector field, (H,T,C,m),
with the following two properties:

(i) (H,T,C,m) is consistent with f0.

(ii) For all σ ∈ K, σ ∈ H if and only if σ is a left-
right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

32nd Canadian Conference on Computational Geometry, 2020

Proof. Let K and f0 be as defined in the theorem
statement. Let f̃ : K → R be defined for each sim-
plex σ ∈ K by f̃(σ) := maxv∈σ f0(v). Let (H,T,C,m)
and (H ′, T ′, C ′,m′) be two GVFs that satisfy (i), (ii),
and (iii).

Let σ ∈ H. By the forward direction of (ii), we know
that σ is a left-right parent. By the backward direction
of (ii), we know that σ ∈ H ′. Thus, we have shown
that H ⊆ H ′. Repeating this argument by swapping
the roles of H and H ′ gives us H ′ ⊆ H.

Since σ ∈ H = H ′ and because (iii) holds, we have
shown that σ is paired with ρ(σ) in both matchings, and
specifically m(ρ(σ)) = σ = m′(ρ(σ)). Since m and m′
are bijections by (i), we also know that:

T = {τ ∈ K | ∃σ ∈ H s.t. m(ρ(σ)) = σ} = T ′.

Thus, T = T ′ and m = m′.
Finally, we conclude:

C = K \ (T ∪H) = K \ (T ′ ∪H ′) = C ′,

which means that (H,T,C,m) and (H ′, T ′, C ′,m′) are
the same GVF. Thus, we conclude that the gradient
vector field satisfying (i), (ii), and (iii) is unique. �

Since ExtractRightChild and ExtractRaw
both satisfy the hypothesis of Theorem 9, the outputs
of the algorithms must be the same.

Theorem 10 (Algorithm Equivalence) Let K be a
simplicial complex and let f0 : K0 → R be an in-
jective function. Then ExtractRaw(K, f0) and
ExtractRightChild(K, f0) yield identical outputs.

Proof. By Theorem 3 and Lemma 12, the output of
ExtractRaw satisfies the properties in Theorem 9.
By Lemma 8, Lemma 6, and Lemma 7, the output of
ExtractRightChild satisfies the properties of The-
orem 9. Then, by Theorem 9, ExtractRaw and Ex-
tractRightChild are equivalent.

�

When we consider the runtime and space usage of
ExtractRightChild, we find the following:

Theorem 11 (New Runtime) Given a simplicial
complex K (represented as a Hasse diagram), and an
injective function f0 : K0 → R, ExtractRightChild
computes a GVF consistent with f0 in O(dn) time and
uses O(n) space.

Proof. First, line Line 1 decorates the Hasse diagram.
By Lemma 4, the decoration takes O(dn) time and O(n)
space. Lines 3-13, process each node of the decorated
Hasse diagram. Each iteration of the loop is O(1) in
time and space because all required data was computed
while decorating. As there are n− n0 nodes to process,

Lines 3-13 takes O(n) time and uses O(1) space. Finally,
we iterate over the zero-simplices in O(n0) time.

The bottleneck of space and time usage of the algo-
rithm is decorating the Hasse diagram, therefore, the
algorithm takes O(dn) time and O(n) space. �

5 Discussion

In this paper, we identified properties of the Extract
and ExtractRaw algorithms [13]. We used these
properties to simplify ExtractRaw to the equivalent
algorithm ExtractRightChild. Our simplification
improves the runtime from Ω(n2 log n) to O(dn).

There are several possible extensions of this work.
The problem of finding tight bounds on the runtime
of Extract is interesting and open. We plan to imple-
ment our approach on high dimensional data sets, and
to further improve to the runtime. We intend to explore
a cancellation algorithm that performs the same task
as ExtractCancel, eliminating critical pairs with
small persistence. Our conjectured cancellation algo-
rithm iterates over critical simplices and applies Ex-
tractRightChild.

Constructing Morse functions that do not require pre-
assigned function values on the vertices is a related area
of active research. The problem of finding a Morse func-
tion with a minimum number of critical simplices is NP-
hard [12]. In [3], Bauer and Rathod show that for a
simplicial complex of dimension d ≥ 3 with n simplices,
it is NP-hard to approximate a Morse matching with
a minimum number of critical simplices within a factor
of O(n1−ε), for any ε > 0. The question is open for
2-dimensional simplicial complexes.

Acknowledgements This material is based upon work
supported by the National Science Foundation under
the following grants: CCF 1618605 & DMS 1854336
(BTF) and DBI 1661530 (DLM). Additionally, BH
thanks the Montana State Undergraduate Scholars Pro-
gram. All authors thank Nick Scoville for introducing
us to KKM [13] and for his thoughtful discussions.

References

[1] U. Bauer. Persistence in Discrete Morse Theory. PhD
thesis, Niedersächsische Staats-und Universitätsbiblio-
thek Göttingen, 2011.

[2] U. Bauer, C. Lange, and M. Wardetzky. Optimal topo-
logical simplification of discrete functions on surfaces.
Discrete and Computational Geometry, 47(2):347–377,
2012.

[3] U. Bauer and A. Rathod. Hardness of approximation
for Morse matching. arXiv:1801.08380, 2018.

[4] L. Čomić and L. De Floriani. Dimension-independent
simplification and refinement of Morse complexes.
Graphical Models, 73(5):261–285, 2011.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

[5] T. Dey, J. Wang, and Y. Wang. Graph reconstruction
by discrete Morse theory. In 34th Symposium on Com-
putational Geometry (SoCG), pages 31:1–31–13, 2018.

[6] H. Edelsbrunner and J. Harer. Computational Topology:
An Introduction. American Mathematical Society, 2010.

[7] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hi-
erarchical Morse-Smale complexes for piecewise linear
2-manifolds. Discrete and Computational Geometry,
30(1):87–107, 2003.

[8] H. Edelsbrunner, D. Letscher, and A. Zomorodian.
Topological persistence and simplification. Discrete and
Computational Geometry, 28:511–533, 2002.

[9] R. Forman. Discrete Morse theory for cell complexes.
Advances in Mathematics, 134:90–145, 1998.

[10] R. Forman. A user’s guide to discrete Morse theory.
Séminaire Lotharingien de Combinatoire, 42:Art. B48c,
35pp, 2002.

[11] P. Hersh. On optimizing discrete Morse functions. Ad-
vances in Applied Math, 35:294–322, 2005.

[12] M. Joswig and M. Pfetsch. Computing optimal Morse
matchings. SIAM Journal on Discrete Mathematics
(SIDMA), 20(1):11–25, 2006.

[13] H. King, K. Knudson, and N. Mramor. Generating dis-
crete Morse functions from point data. Experimental
Mathematics, 14:435–444, 2005. MR2193806.

[14] K. Knudson. Morse Theory: Smooth and Discrete.
World Scientific Publishing Company, 2015.

[15] T. Lewiner, H. Lopes, and G. Tavares. Toward optimal-
ity in discrete Morse theory. Experimental Mathematics,
12:271–285, 2003.

[16] J. Milnor. Morse Theory. Princeton University Press,
Princeton, New Jersey, 1963.

[17] K. Mischaikow and V. Nanda. Morse theory for filtra-
tions and efficient computation of persistent homology.
Discrete and Computational Geometry, (50):330, 2013.

[18] R. Raz. On the complexity of matrix product. SIAM
Journal on Computing, 32:1356–1369, 2003.

[19] N. Scoville. Discrete Morse Theory. American Mathe-
matical Society, Providence, Rhode Island, 2019.

A Additional Details for Extract

To put our result in context, we now provide a glimpse
into the inner workings of Extract, and reveal the
underlying properties of ExtractRaw which give it
an identical output to ExtractRightChild. We also
provide a formal runtime analysis of ExtractRaw
to verify that ExtractRightChild provides an im-
proved time complexity.

A.1 Subroutines for Extract

In this section, we recall the algorithms proposed by
KKM [13]. Note that we made some slight modifica-
tions to the presentation of KKM’s initial description

to improve readability. The modifications do not affect
the asymptotic time or space used by the algorithm,
although it does remove some redundant computation.

In particular, we modified the inputs to explicitly pass
around a GVF so that the inputs of each algorithm are
clear. We simplified notation and inlined the subroutine
Cancel. From the previous modifications, we observed
that the algorithm recomputes a gradient path that is
currently in scope and so we simply unpack the path on
Line 11 of Algorithm 4.

ExtractRaw computes the lower link of each ver-
tex v in a simplicial complex, and assigns v ∈ C if
lowerlinkK(v) = ∅. If lowerlinkK(v) 6= ∅, its lower link
is recursively inputted into ExtractRaw and this re-
cursion continues until an empty lower link is reached.
When the lower link is not empty, ExtractRaw as-
signs v ∈ T and the smallest function valued vertex
ω0 in lowerlinkK(v) is combined with v and added to
H, carrying with this assignment a mapping m from
ω0 ∗ v ∈ H to v ∈ T . As the recursion continues, higher
dimensional simplices in the lower start of v are able
to be assigned to both H and T based on combinations
consistent with the assignments of the vertices and the
original mappings ofm. Higher dimensional critical cells
are assigned similarly by combining the current vertex
and each previously computed σ ∈ C from the last re-
cursion, until all simplices have been assigned.

Then, because ExtractRaw may have extraneous
critical cells, Cancel works to reduce the number of
critical cells by locating “redundant" gradient paths to
a critical simplex and reversing them after the first pass
by ExtractRaw, refining the output of Extract .

Algorithm 3 [13] ExtractRaw

Input: simp. complx. K, injective fcn. f0 : K0 → R
Output: a GVF consistent with f0

1: T ← ∅, H ← ∅, C ← ∅, m← ∅
2: for all v ∈ K do
3: Let K ′ := the lower link of v.
4: if K ′ = ∅ then
5: Add v to C
6: else
7: Add v to T
8: (T ′, H ′, C ′,m′)←Extract(K ′, f0,∞)
9: w0 ← arg minw∈C′0{f0(w)}

10: Add w0v to H
11: Define m(w0 ∗ v) := v
12: For each σ ∈ C ′ \ {w0}, add v ∗ σ to C
13: for all σ ∈ T ′ do
14: Add v ∗ σ to T
15: Add v ∗m′(σ) to H
16: Define m(v ∗ σ) = v ∗m′(σ)
17: return (H,T,C,m)

Let p ∈ N, σ ∈ Kp be a critical simplex. Let Gjσ

32nd Canadian Conference on Computational Geometry, 2020

Algorithm 4 [13] ExtractCancel

Input: simplicial complex K, injective function
f0 : K0 → R, p ≥ 0, j ∈ N, and GVF γ

Output: Gradient vector field on K
1: Let (H,T,C,m) be the four components of γ
2: for all σ ∈ Cj do
3: s← maxv∈σ f0(v)
4: S ← {Γ | Γ ∈ Gjσ, s−maxw∈ΓL

f0(w) < p}
5: for all Γ ∈ S do
6: mΓ ←∞
7: if ΓL 6= Γ′L for any other Γ′ ∈ S then
8: mΓ ← maxw∈ΓL

f0(w)
9: Γ∗ ← arg minΓ∈S{mΓ}

10: if mΓ∗ 6=∞ then
11: {σ1, τ1, · · · , σk, τk} ← Γ∗

12: Remove τk, σ1 from C
13: Add τk to T ; Add σ1 to H
14: Add (τk, σk) to m
15: for i = 1, ..., k − 1 do
16: Remove (τi, σi+1) from m
17: Add (τi, σi) to m
18: return (H,T,C,m)

denote the set of all nontrival gradient path starting at
σ ∈ Cj and ending in Cj−1.

A.2 Analysis of ExtractRaw

In this appendix, we provide the analysis Algorithm 1
from Section 3. In what follows, let K be a simplicial
complex and let f0 : K0 → R be an injective function.

Lemma 12 (Raw Heads are Parents) Let
(H,T,C,m) be the output of ExtractRaw(K, f0).
Every simplex in H is a left-right parent. Furthermore,
for all σ ∈ H, m(ρ(σ)) = σ.

Proof. Let σ ∈ H. We show that σ is a left-right parent
by induction on the dimension ofK. When dim(K) = 1,
σ is an edge, and σ = m(τ) for some vertex τ ∈ T . In
Line 10 of Algorithm 3 σ is defined as m(τ) = [w0, τ]
where w0 ∈ C ′0 so that f0(w0) is smallest. So, σ is a left-
right parent. Furthermore, m(ρ(σ)) = m(ρ([w0, τ])) =
m(τ) = σ.

Suppose every σ ∈ H is a left-right parent when
dim(K) ≤ d and consider dim(K) = d + 1. If σ is
a (d + 1)−simplex, σ = m(τ) is defined in Line 15 of
Algorithm 3, when a vertex v is selected in Line 2 of
Algorithm 3. We extend the GVF on the lowerlinkK(v)
to include the lower star of v. We havem(τ) = v∗m′(α)
where α = [v1, . . . , vd] ∈ T ′, m′(α) = [v0, v1 . . . vd] ∈ H ′.
Since α and m′(α) are in the lowerlinkK(v) we have
f(vi) < f(v) for 0 ≤ i ≤ d. Then τ = v ∗ α =
[v1, . . . , vd, v] and σ = m(τ) = [v0, v1, . . . , vd, v].

By the induction hypothesism′(α) ∈ H ′ is a left-right
parent. If σ is not a left-right parent, we can remove v
from σ and τ and contradict that m′(α) ∈ H ′.

Furthermore, m(ρ(σ)) = m(ρ(m(τ))) =
m(ρ([v0, v1, . . . , vd, v])) = m([v1, . . . , vd, v]) = m(τ) =
σ. This proves the claim. �

Lemma 13 (Raw Parents are Heads) Let
(H,T,C,m) be the output of ExtractRaw(K, f0).
Let σ ∈ K. If σ is a left-right parent, then σ ∈ H.

Proof. We show if σ ∈ T ∪C then σ is not a left-right
parent. First, suppose σ ∈ T . We use induction on
dim(K) to show σ is not a left-right parent. For the
base case, dim(K) = 1, σ is a vertex and can not be a
left-right parent.

Suppose σ ∈ T is not a left-right parent when
dim(K) ≤ d and consider dim(K) = d + 1. Then σ
is added to T in Line 14 of Algorithm 3 when a ver-
tex v is selected in Line 2. As in Lemma 12, write
σ = v ∗ α = [v1, . . . , vd, v] for some α ∈ T ′.

By the induction hypothesis α is not a left-right par-
ent, thus ` ◦ ρ(α) 6= α, and there exists a vertex v−1

such that `(ρ(α)) = [v−1, v2, v3 . . . , vd] where f(v−1) <
f(v1). We have ` ◦ ρ(σ) = ` ◦ ρ([v1, v2, . . . , vd, v]) =
`([v2, v3 . . . , vd, v]) = [v−1, v2, . . . , vd, v] 6= σ.

Now, suppose σ ∈ C. There are two places where
elements are added to C, Line 5 of Algorithm 3 and
Line 12. In Line 5 c is a vertex and can not be a left-
right parent.

In Line 12 c is defined as c = v ∗ α for some α =
[v0, v1, . . . , vd] ∈ C ′\w0 where w0 ∈ C ′0 so that f0(w0)
is smallest. Now ` ◦ g(c) = ` ◦ g([v0, v1, . . . , vd, v]) =
`([v1, . . . , vd, v]) = [w0, v1, . . . , vd, v] 6= c. We have
shown that if σ is a left-right parent, then σ ∈ H.

�

We summarize the properties of ExtractRaw in the
following theorem.

Theorem 3 (Properies of ExtractRaw) Let K
be a simplicial complex, let f0 : K0 → R be an injec-
tive function, and suppose (H,T,C,m) is the output of
ExtractRaw(K, f0). Let ε > 0. Then, there exists a
discrete Morse function f : K → R such that the follow-
ing hold:

(i) (H,T,C,m) is a GVF consistent with f0.

(ii) Let σ ∈ K. Then, σ ∈ H if and only if σ is a
left-right parent.

(iii) For all σ ∈ H, m(ρ(σ)) = σ.

(iv) The runtime of ExtractRaw is Ω(n2 log n).

Proof. (i) is proven in Theorem 3.1 of [13]. By
Lemma 12 and Lemma 13, we conclude (ii). Also by
Lemma 12 we can guarantee (iii).

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

To show (iv), we observe that the worst-case runtime
for a single execution of Line 8 of Algorithm 3 happens
when the lower link of v is of size Θ(n/2). Computing
the optimal pairings that Extract returns is at least
as hard as computing the homology of K ′, which is of
the time complexity of matrix multiplication. By [18],
we know that the runtime of ExtractRaw is lower-
bounded by Ω(n2 log n). �

	Introduction
	Background
	A Discrete Morse Extension of f0 2mu-:6muplus1muK0 R
	A Faster Algorithm for ExtractRaw
	Hasse Diagram Data Structure
	Algorithm Description
	Analysis of ExtractRightChild

	Discussion
	Additional Details for Extract
	Subroutines for Extract
	Analysis of ExtractRaw

