
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

2048 Without Merging

Hugo A. Akitaya* Erik D. Demaine� Jason S. Ku�

Jayson Lynch§ Mike Paterson¶ Csaba D. Tóth�

Abstract

Imagine t ≤ mn unit-square tiles in an m×n rectangular
box that you can tilt to cause all tiles to slide maximally
in one of the four orthogonal directions. Given two tiles
of interest, is there a tilt sequence that brings them to
adjacent squares? We give a linear-time algorithm for
this problem, motivated by 2048 endgames. We also
bound the number of reachable configurations, and de-
sign instances where all t tiles permute according to a
cyclic permutation every four tilts.

1 Introduction

2048 is a popular open-source video game by then-
19-year-old Gabriele Cirulli [Cir14, Wik20] that took
the world by storm in 2014. It was inspired by an-
other game called 2048 by Saming, which in turn was
inspired by a similar game called 1024!, which in turn
was inspired by the genesis game Threes! by Vollmer,
Wohlwend, and Hinson released just two months ear-
lier, all of which inspired many other variants. See
[LU18] for more on the history and descriptions of sev-
eral game-variant rules. Cirulli’s 2048, Threes!, Fives,
Det2048, and Fibonacci all feature the same kind of
movement, also identical to the 2011 physical puzzle
game Tilt [BDF+19, BLC+19, BGC+20]: unit-square
tiles in a rectangular box with only four global tilt con-
trols — sliding all tiles maximally in an orthogonal di-
rection among {N,E, S,W}. Each tile has a label, and
certain labeled tiles merge together (into a single newly
labeled tile) when slid into each other; the goal is gen-
erally to produce a tile with a particular label. Each
game also has a (possibly randomized) algorithm for in-
troducing new tile(s) after each move. Most of these
games (in their perfect-information form) are NP-hard
[LU18, AAD16].

*School of Computer Science, Carleton University,
hugoakitaya@gmail.com

�CSAIL, MIT, edemaine@mit.edu
�EECS, MIT, jasonku@mit.edu
§CSAIL, MIT, jaysonl@mit.edu
¶Dept of Computer Science, University of Warwick, UK, M.S.

Paterson@warwick.ac.uk
�CSU Northridge and Tufts University, cdtoth@eecs.tufts.edu

Our results. In this paper, we consider a variant where
no tile merging can happen, no additional tiles are in-
troduced (as in [AAD16]), and there are no fixed obsta-
cles (as in most games above, but unlike Tilt and e.g.
1024!). This minimal variant, which we call 2048 with-
out merging , intends to capture some core mathemat-
ical structure of the many game variants listed above.

In particular, we study the problem of whether two
particular tiles can be made adjacent by a sequence of
tilt operations, which is motivated by a subproblem aris-
ing near the end of a 2048 game, where the board has
two 1024-labeled tiles and the player wants to make
them adjacent so that another tilt merges them into
a 2048-labeled tile. This problem was posed by Mike
Paterson in 2018. We solve this problem in Section 3
by giving an O(t)-time algorithm to decide, given an
initial m × n board configuration of t ≤ mn tiles and
two marked tiles t1 and t2, whether there exists a tilt
sequence that brings t1 and t2 to adjacent squares. In
the positive case, our algorithm also outputs the min-
imum tilt sequence. This algorithm generalizes to de-
cide in O(st) time whether any pair among s special
tiles (1024s) can be made adjacent. In particular, this
running time is O(t) for s = O(1) and always O(t2).

We also consider the combinatorial structure of the
motion of all tiles, which is roughly described by pow-
ers of a single permutation. In Section 4, we give a lower
bound of 2Ω(

√
t) and an upper bound of 2O(

√
t log t) on

the number of different states that can be reached by a
tilt sequence from an initial m× n board configuration
with t = Θ(mn) tiles. Section 5 shows that there ex-
ist initial m× n board configurations with permutation
cycles of length Ω(mn) and, for even m and n, there is
a configuration in which every tile is part of the same
permutation cycle. In the latter configurations, each tile
can reach any possible target square via a tilt sequence
of length O(mn).

2 Definitions and Basics

We base our terminology on [BLC+19, BGC+20]. A
board is a rectangular region of the 2D square lattice,
whose 1× 1 cells we refer to as squares. We represent
an m×n board B by {(x, y) | x ∈ {0, 1, . . . ,m− 1}, y ∈
{0, 1, . . . , n−1}} where (0, 0) represents the bottom-left
square. Let T be a set of t objects called (slidable)

hugoakitaya@gmail.com
edemaine@mit.edu
jasonku@mit.edu
jaysonl@mit.edu
M.S.Paterson@warwick.ac.uk
M.S.Paterson@warwick.ac.uk
cdtoth@eecs.tufts.edu

32nd Canadian Conference on Computational Geometry, 2020

tiles. A configuration is an injective function C :
T → B. We call a square full if it is in the image of C,
and empty otherwise.

Tilt is an operation that takes a configuration C and
a direction d ∈ {N,E, S,W} and returns a configuration
C ′ as follows. A tilt is horizontal if d ∈ {E,W}, or
vertical if d ∈ {N,S}. We describe a tilt for d = N ; the
other cases are symmetric. For all rows j from top to
bottom, and for all columns i, if (i, j) is full, then move
the tile at (i, j) (marking (i, j) empty) to the topmost
square (i, j′) in the ith column marked as empty, where
j′ ≥ j (marking (i, j′) as full).

A tilt sequence is a sequence of tilts applied to a
configuration represented by a sequence of directions
D = (d1, d2, . . . , dk). Two tilt sequences are equivalent
if they produce the same configuration. A row (col-
umn) is called monotone non-increasing if every full
square is to the left of (below) every empty square in the
row (column). Monotone non-decreasing is defined
analogously. We call a configuration SW -canonical if
every row and every column is monotone non-increasing.
Alternatively, C is SW -canonical if a tilt with direction
S or W would return C. Symmetrically, we can define
NE-, NW -, and SE-canonical configurations.

Lemma 1 After one horizontal and one vertical tilt,
not necessarily in this order, we get a canonical config-
uration.

Proof. Without loss of generality, we apply the tilt
sequence (S,W). After the first tilt, every column is
monotone non-increasing. Consequently, the number of
full squares in a row is monotone (non-increasing) from
bottom to top. Similarly, the second tilt makes every
row monotone non-increasing. By definition, a horizon-
tal tilt does not change the number of full squares in
each row. The columns in the resulting configurations
are also monotone non-increasing. The result is a SW -
canonical configuration. �

The following lemma will allow us to focus only on
a clockwise or counterclockwise tilt sequence, i.e., a
substring of (N,E, S,W)∗ or (N,W,S,E)∗ (where the
Kleene Star notation A∗ denotes sequence A repeated
zero or more times).

Lemma 2 Every shortest tilt sequence between two
configurations is either a clockwise or counterclockwise
tilt sequence.

Proof. It is clear by definition that the tilt sequence
(S, S) is equivalent to (S). Similarly, (N,S) is equiv-
alent to S. Then the shortest tilt sequence between
configurations either has length less than 2 or one of its
two first tilts is horizontal and the other one is verti-
cal. Without loss of generality, let (S,W) be the prefix
of such sequence. By Lemma 1, after these two initial

tilts we get a SW -canonical configuration and hence the
third tilt cannot be in the S or W direction. It cannot be
E, since (S,E) is equivalent and shorter than (S,W,E).
Hence the sequence starts with (S,W,N). We can then
induct on the length of the sequence to show that all
subsequent tilts must follow a clockwise order. �

The following lemma allows us to describe the move-
ment of the tiles using permutations.

Lemma 3 After every four tilts in a shortest sequence,
the union of the filled squares form the same shape, but
with permuted tile positions.

Proof. Suppose C is a SW -canonical configuration
where the length of row i is ai and the length of col-
umn j is bj . Since every row and column in C is mono-
tone non-increasing, a0 ≥ . . . ≥ am−1, and we find that
bj = |{i | ai ≥ j}|. After a horizontal tilt in direction
E to reach configuration C ′, all the row lengths remain
as before and are monotone non-increasing. Since C ′

is a SE-canonical configuration the column lengths are
non-decreasing and bn−1−j = |{i | ai ≥ j}|, as before
but counting from the right. So the sequence of col-
umn lengths is now reversed, i.e., bm−1, . . . , b0. From
C ′ a vertical tilt in direction N would reverse the row
length order, and so on, and a complete cycle of four
tilts will return row and column lengths to their origi-
nal sequences. �

Let g be the permutation referred by Lemma 3. Our
techniques will be based on the cyclic subgroup gener-
ated by g and its cycle decomposition. For example, if
the initial configuration is given by a lower-triangular
matrix in a square board where exactly the squares on
and below the main diagonal are full, the permutation
g will induce cycles of length 3.

If C is a cycle in the permutation generated by g,
and s1, s2 ∈ C, then the cycle index ind(s1, s2) is the
smallest nonnegative integer i such that gi(s1) = s2,
that is, i successive application of g carries s1 to s2. We
say that two cycles are adjacent if there exists a pair
of adjacent squares with one square in each cycle.

3 Algorithm

In this section we give an algorithm that decides the
following problem. Given an initial configuration C0 on
an m × n board, and two tiles t1, t2 ∈ T , can a tilt
sequence produce a configuration Ck in which t1 and t2
are in adjacent squares? If yes, output a shortest such
sequence. We denote by Ci the configuration obtained
after the ith tilt.

1. Guess the first two tilt directions from {(S,W),
(S,E), (N,W), (N,E), (E,N), (E,S), (W,N),
(W,S)}, checking whether t1 and t2 are adjacent

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 1: Application of tile sequence (N,E, S,W) on a single ring of Cn resulting in permutation g(Cn). Each tile
moves cyclically counterclockwise by k positions, where 2k is the width of the ring, e.g., the tile marked in blue.

in C0 and C1. The obtained configuration C2 is in
canonical form.

2. Guess a type of canonical configuration from {SE,
SW, NE, NW}, computing the first configuration
in the sequence, i.e., a configuration C ′ in {C2, C3,
C4, C5}.

3. Compute the permutation g equivalent to four tilts
in clockwise or counterclockwise direction depend-
ing on the guessed first two tilts.

4. Compute the cycle decomposition of g.

5. Let C1 and C2 be the cycles containing t1 and t2
respectively. By restricting our attention to the el-
ements of C1 and C2, successively applying g results
in lcm(|C1|, |C2|) possible different permutations of
these elements. For example, if C1 = C2, then the
number of such states is |C1|. Check in each of these
states whether t1 is adjacent to t2.

Theorem 4 Given an initial configuration C0 on an
m× n board, and two tiles t1, t2 ∈ T , a shortest tilt se-
quence required to make t1 and t2 adjacent can be com-
puted in O(|T |) time.

Proof. The correctness of our algorithm follows di-
rectly from Lemmas 1–3. After the first two configu-
rations, a clockwise or counterclockwise tilt sequence
produces only canonical configurations. In Step 1, the
algorithm tries all possible starting tilts and both ro-
tation directions. Step 2 considers all possible types of
canonical configurations. Steps 3–5 considers all pos-
sible relative positions of t1 and t2 given a rotation
direction of the tilt sequence and a type of canonical
configuration. Hence, the algorithm is correct.

Most of the algorithm runs in O(|T |) time. Steps 1–2
add a 8 · 4 = 32 multiplicative factor to the runtime.
Steps 3–4 can be executed in O(|T |) time by simulating
four tilts to obtain a directed graph representing g, and
obtaining the cycles of g containing t1 and t2 via a DFS
from such vertices. Here we use that a tilt operation can

be simulated in O(|T |) time using counting sort on the
coordinates; for instance, a horizontal tilt determines
the x order of tiles in each row, then moves the tiles to
one extreme of the board without changing such order.

In Step 5, we need more care. A näıve implementation
iterates through all lcm(|C1|, |C2|) = O(|T |2) different
possible positions of t1 and t2 since both |C1| and |C2|
are O(|T |). The resulting running time is O(|T |2).

We can reduce the runtime of Step 5 to O(|T |) as fol-
lows. For all |C1| ≤ |T | possible positions of t1, we can
try all possible adjacent squares (up to four), checking
whether a tilt sequence can bring tiles t1 and t2 simulta-
neously to those squares, as follows. Suppose the desired
positions are indeed in C1 and C2 respectively, say the
pth and qth positions of C1 and C2 respectively, counting
from the initial positions of t1 and t2 with zero index-
ing. By Bézout’s Identity [JJ98], the set of all integer
linear combinations i|C1|+ j|C2| is exactly the set of in-
teger multiples of d = gcd(|C1|, |C2|). Thus the desired
tiles can meet at the specified position exactly if p ≡ q
(mod d). We can then find the actual number of tilts by
using the Chinese Remainder Theorem. Since we only
need to compute d once, spending O(|T |) time, and we
can test each of the 4|C1| meeting positions in constant
time, the total runtime is O(|T |). �

Generalization to |S| special tiles. We can generalize
Theorem 4 to the case of a subset S ⊆ T of special
tiles, where 2 ≤ |S| ≤ |T |. Specifically, we consider
the following problem. Given an initial configuration
C0 on an m × n board, and a subset S ⊆ T of |S|
special tiles, can a tilt sequence produce a configuration
Ck in which two special tiles are in adjacent squares?
If yes, output a shortest such sequence. We modify our
previous algorithm, designed for the case |S| = 2, by
replacing Step 5 with the following:

5*. For each pair {s1, s2} of adjacent squares that be-
long respectively to special cycles Ci and Cj of g
(that is, cycles containing at least one special tile
in S), check whether any of the special tiles in Ci

32nd Canadian Conference on Computational Geometry, 2020

and Cj can simultaneously move to s1 and s2 by
successively applying g, as follows:

� Let d = gcd(|Ci|, |Cj |).

� For each t ∈ Ci ∩ S, compute the cycle in-
dex ind(t, s1) (as defined in Section 2), and
let I1 = {ind(t, s1) mod d | t ∈ Ci ∩ S}.

� Similarly, compute I2 = {ind(t, s2) mod d |
t ∈ Cj ∩ S}.

� Check whether I1 ∩ I2 6= ∅.

Theorem 5 Given an initial configuration of |T | tiles
on an m × n board and a set S ⊂ T of special tiles, a
shortest tilt sequence required to make two special tiles
adjacent can be computed in O(|S| · |T |) time.

Proof. For the correctness of the algorithm, assume
that there exist two special tiles t1 ∈ Ci ∩S, t2 ∈ Cj ∩S
and an integer h ≥ 0 such that gh(t1) = s1 and
gh(t2) = s2, where s1 and s2 are adjacent squares in
a canonical configuration C ′. Then h ≡ ind(t1, s1)
(mod |Ci|) and h ≡ ind(t2, s2) (mod |Cj |). By Bézout’s
Identity, ind(t1, s1) ≡ ind(t2, s2) (mod d), where d =
gcd(|Ci|, |Cj |). Conversely, if ind(t1, s1) ≡ ind(t2, s2)
(mod d), then there exits an integer h ≥ 0 such that h ≡
ind(t1, s1) (mod |Ci|) and h ≡ ind(t2, s2) (mod |Cj |).

As noted above, Steps 1–4 of the algorithm run in
O(|T |) time. In Step 5*, we can memoize the gcd of
the lengths of all pairs of adjacent special cycles. For
each such pair {Ci, Cj}, the Euclidean algorithm com-
putes gcd(|Ci|, |Cj |) in O(log(|Ci| + |Cj |)) = O(log |T |)
time. There are at most |S| special cycles, and hence
O(|S|2) pairs of special cycles. Furthermore, every pair
of adjacent cycles contain a pair of adjacent squares,
and since each square has at most four neighbors, there
are O(|T |) adjacent pairs of squares. Therefore, the
gcds can be computed in O(min{|S|2, |T |} log |T |) time.
This time bound is always O(|S| · |T |): if |S|2 ≤ |T |,
then we have O(|S|2 log |T |) = O(|S| · |S| log |T |) =
O(|S|

√
|T | log |T |) = O(|S|·|T |); and if |T | ≤ |S|2, then

we have O(|T | log |T |) = O(|T |
√
|T |) = O(|T | · |S|).

Step 5* iterates through all O(|T |) pairs (s1, s2) of ad-
jacent squares. Suppose that s1 ∈ Ci and s2 ∈ Cj where
Ci and Cj are special cycles. Given the precomputed in-
dices of g, the index sets I1 and I2 can be computed in
O(|Ci ∩ S|+ |Cj ∩ S|) = O(|S|) time. Checking whether
I1∩I2 = ∅ via hashing takes O(|I1|+|I2|) = O(|S|) time.
For each index in I1 ∩ I2, we can then find the actual
number of tilts using the Chinese Remainder Theorem,
in overall |I1 ∩ I2| = O(|S|) time. After memoizing the
gcd of adjacent special cycles, Step 5* of the algorithm
thus runs in O(|S| · |T |) time. �

4 Bounds on Reachable Configurations

Lower bound. For even n, consider the configuration

Cn =

[
F L
F F

]
on an n × n board where F is a full n/2 × n/2 square,
and L is a n/2× n/2 matrix where exactly the squares
below the main diagonal are full (see Figure 1). Let the
outer ring be the set of extremal tiles in N , E, S, or W
direction, and define inner rings recursively. The outer
ring contains 7(n/2− 1) + 3 tiles, while each successive
inner ring contains 7 fewer tiles. So Cn comprises n/2
rings, with 7k+3 tiles in ring k for k ∈ {0, . . . , n/2−1},
where the innermost ring 0 is an L-shaped tromino.

Lemma 6 Each ring in Cn is self-contained (does not
mix with adjacent rings), and the cyclic order of ele-
ments around the ring does not change after applying g.

Proof. By symmetry, it suffices to show that each ring
in C ′n, the NW -canonical configuration obtained after
a N tilt from Cn, is exactly a ring in Cn, and that the
cyclic order of tiles does not change. The outermost
ring is composed of the first and last columns, and the
extremal tiles in each remaining column. After the tilt,
all such tiles remain extremal and their order along the
convex hull remains the same. No other tiles become ex-
tremal because the number of tiles in adjacent columns
differ by at most one. Hence, the outermost ring re-
mains the same. If we look at the remaining tiles after
removing the outermost ring, they form a configuration
Cn−2 in the (n−2)×(n−2) board obtained after remov-
ing the extremal rows and columns. The configuration
C ′n−2 obtained after a N tilt from Cn−2 can be obtained
in the same way from C ′n. Hence, the second outermost
ring also remains the same in Cn and C ′n. By induction,
all rings remain the same. �

Theorem 7 The number of different configurations
reachable from Cn is eΘ(n) = eΘ(

√
t) where t is the num-

ber of tiles in Cn.

Proof. We first show that, after applying g, the ele-
ments in ring k (with width 2k) shift by k positions
counterclockwise along its ring. By Lemma 6 it suffices
to show that the top-left tile x moves down by k. As
shown in Figure 1, x does not move after the N and E
tilts, moves down by k after the S tilt, and again does
not move after the W tilt.

We prove the claimed bound by focusing on a subset
of rings and bounding the number of different states of
the tiles in the selected rings that are obtained by suc-
cessively applying g. We can restrict to rings with prime
lengths of the form 7k+3. In such cases, the ring induces
a single cycle in g because the length of the ring and the

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Figure 2: Application of the tilt sequence (N,E, S,W) to Cmn resulting in the permutation g(Cmn), depicting the
movement of tile subsets {L1, L2, L3, L4, L5, L6, R1, R2, R3, R4, R5}. Each of these subset moves as a rigid block.

amount that each element shifts around the ring after g
are coprimes and each element will eventually visit every
position in the ring. Using a variant of the prime num-
ber theorem for arithmetic progressions [Dab89, Tao09],∑

p ≤ x
p ≡ a mod q

log p ≡ x

ϕ(q)
(1 + o(1))

if (a, q) = 1, where ϕ is Euler’s totient function. In
particular, the product of primes
p ≤ n/2, p ≡ 3 (mod 7), is eΘ(n) = eΘ(

√
t). �

Upper bound. Starting from a SW -canonical configu-
ration containing t tiles in an m×n board, the number of
reachable configurations equals the least common multi-
ple of the cycle lengths. Every cycle has length at most t
(the number of tiles), hence the lcm of the cycle lengths
is bounded above by lcm(1, 2, . . . , t) = et(1+o(1)).

We can improve upon this bound by realizing that
the sum of the cycle lengths must be t. The maximal
least common multiple of a partition of t into positive
integers is known as Landau’s function [Nic13], and it

is asymptotically eΘ(
√
t log t).

5 Long Cycles

In this section we provide a construction for an initial
m× n board configuration Cmn with Θ(mn) tiles with
a single permutation cycle. We can assume that m and
n are even, or else we construct the instance of size
(2bm/2c)× (2bn/2c) and add an empty row and/or col-
umn. Refer to Figure 2. We leave empty the last n/2+1
(n/2) squares in the top (second to top) row of Cmn.
The remaining squares are filled with tiles.

We now show that the permutation g induced by the
tilt sequence (N,E, S,W) has a single cycle. We first
describe g by giving a successor function based on the
coordinates of a given square, then we describe an algo-
rithm that outputs in order all elements in a cycle in g
and show that the number of outputs equals the number

of tiles. Let s(x, y) be such a successor function where
s(x, y) is the coordinates of the square after the square
(x, y) in g. Let ∆(x, y) = s(x, y) − (x, y) be the vector
from (x, y) to its successor. Refer to Figure 2. We par-
tition the occupied squares in the board into 11 regions
as follows, where p(x, y) denotes the region containing
square (x, y):

p(x, y) =

L1 if 0 ≤ x < m/2− 1 and 2 ≤ y < n

L2 if x = m/2− 1 and 1 ≤ y < n− 1

L3 if 0 ≤ x < m/2− 1 and y = 0

L4 if 1 ≤ x < m/2− 1 and y = 1

L5 if x = 0 and y = 1

L6 if x = m/2− 1 and y = 0

R1 if m/2 + 1 ≤ x < m and 0 ≤ y < n− 4

R2 if x = m/2 and 0 ≤ y < n− 3

R3 if m/2 + 1 ≤ x < m and y = n− 4

R4 if m/2 + 1 ≤ x < m and y = n− 3

R5 if x = m/2 and y = n− 3

Now we define ∆(x, y) based on the above partition,
which can be easily verified by following the tiles ini-
tially in each region after four clockwise tilts as shown
in Figure 2.

∆(x, y) =

(0,−2) if p(x, y) = L1

(0,−1) if p(x, y) = L2

((m/2 + 1), 0) if p(x, y) = L3

(m/2, 0) if p(x, y) = L4

(m/2,−1) if p(x, y) = L5

(m/2, 1) if p(x, y) = L6

(0, 2) if p(x, y) = R1

(0, 1) if p(x, y) = R2

(−m/2, 2) if p(x, y) = R3

(−(m/2 + 1), 2) if p(x, y) = R4

(−m/2, 1) if p(x, y) = R5

32nd Canadian Conference on Computational Geometry, 2020

84

85

86

87

88

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61 62

63

64

65

66

67

68

69

70 71

72

73

74

75

76

77

78

79 80

81

82

83

Figure 3: An example output cycle of g applied to Cmn

for m = n = 10. Indexing starts with 0 at (m
2 , 0) in-

creasing to 88 at (0, 1), where increasing indices are out-
lined with increasing opacity.

We now describe an algorithm that outputs one cycle
of g starting with square (m/2, 0). Refer to Figure 3 for
an example of output of the algorithm.

1. For 0 ≤ j < n− 2: output (m
2 , j)

2. For 0 ≤ i < m
2 − 1:

(a) For 0 ≤ j < n
2 : output (i, n− 2− 2j)

(b) For 0 ≤ j < n
2 − 1: output (m

2 + 1 + i, 2j)

3. For 0 ≤ j < n− 1: output (m
2 − 1, n− 2− j)

4. For 0 ≤ i < m
2 − 1:

(a) For 0 ≤ j < n
2 − 1: output (m− 1− i, 1 + 2j)

(b) For 0 ≤ j < n
2 : output (m

2 −2−i, n−1−2j)

Theorem 8 The permutation g of the tilt sequence
(N,E, S,W) on configuration Cmn has a single cycle
of length mn−m− 1.

Proof. It suffices to show that the algorithm above cor-
rectly outputs a cycle in order, and that it outputs all
mn−m− 1 full squares of Cmn. We now focus on the
former. Step 1 outputs all squares in R2 and R5 from
bottom to top. This matches the successor function for
R2. The successor of the square in R5 is (0, n−2) which

is the first position output by Step 2. Step 2(a) outputs
squares in L1 and a square in L3 at the end of the loop,
according to the successor function in L1, i.e., two units
below the previous one. The first square output by each
execution of Step 2(b) is the successor of the square in
L3 output by Step 2(a), i.e., m/2 + 1 units to the right.
Step 2(b) outputs squares in R1 and a square in R3 at
the end of the loop, according to the successor func-
tion in R1, i.e., two units above the previous one. The
next output square is by either another execution of
Step 2(a), or by Step 3, both obey the successor func-
tion of R3, ∆(x, y) = (−m/2, 2). Step 3 outputs squares
in L2 from top to bottom and then outputs the square
in L6, obeying the successor function in L2. The next
square is (m− 1, 1) in R1 satisfying the successor func-
tion in L6. Step 4(a) outputs squares in R1 and a square
in R4 at the end of the loop, according to the successor
function in R1, i.e., two units above the previous one.
The first square output by each execution of Step 4(b)
is the successor of the square in R4 output by Step 4(a),
i.e., ∆(x, y) = (−m/2−1, 2). Step 4(b) outputs squares
in L1 and a square in L4 at the end of the loop or, in
the last execution of the loop, it outputs the square in
L5. The order is the same as specified in L1.

The number of outputs of the algorithm is:

(n− 2) + (m/2− 1)(n/2 + n/2− 1) +
(n− 1) + (m/2− 1)(n/2− 1 + n/2)

= mn−m−1,

which is equal to t, as desired. �

6 Open Problems

A few interesting problems in this space remain open:

1. Close the gap between 2Ω(
√
t) and 2O(

√
t log t) for the

number of reachable configurations in 2048 without
merging.

2. Are there examples where all t tiles permute in a
single cycle, for even t? (Our construction works
only for odd t.)

3. Can Theorem 5 be improved, that is, is it possible
to decide in o(st) time whether any pair of s special
tiles among t total tiles in a given configuration can
be made adjacent?

4. What happens in higher dimensions, such as 3D,
where Lemma 2 no longer holds? (This question
was posed by Martin Demaine in 2018.)

Acknowledgments

We thank Fae Charlton, Martin Demaine, and Leonie
Ryvkin for helpful discussions on this topic.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

References

[AAD16] Ahmed Abdelkader, Aditya Acharya, and Philip
Dasler. 2048 without new tiles is still hard. In
Erik D. Demaine and Fabrizio Grandoni, editors,
Proceedings of the 8th International Conference
on Fun with Algorithms, volume 49 of LIPIcs,
pages 1:1–1:14, 2016.

[BDF+19] Aaron T. Becker, Erik D. Demaine, Sándor P.
Fekete, Jarrett Lonsford, and Rose Morris-
Wright. Particle computation: complexity, algo-
rithms, and logic. Natural Computing, 18(1):181–
201, 2019.

[BGC+20] Jose Balanza-Martinez, Timothy Gomez, David
Caballero, Austin Luchsinger, Angel A. Cantu,
Rene Reyes, Mauricio Flores, Robert T.
Schweller, and Tim Wylie. Hierarchical shape
construction and complexity for slidable poly-
ominoes under uniform external forces. In Pro-
ceedings of the 31st ACM-SIAM Symposium on
Discrete Algorithms, pages 2625–2641, 2020.

[BLC+19] Jose Balanza-Martinez, Austin Luchsinger,
David Caballero, Rene Reyes, Angel A. Cantu,
Robert T. Schweller, Luis Angel Garcia, and Tim
Wylie. Full tilt: Universal constructors for gen-
eral shapes with uniform external forces. In Pro-
ceedings of the 30th ACM-SIAM Symposium on
Discrete Algorithms, pages 2689–2708, 2019.

[Cir14] Gabriele Cirulli. 2048. Github repository,
2014. https://github.com/gabrielecirulli/2048.
Playable version at https://play2048.co/.

[Dab89] Hédi Daboussi. On the prime number theorem
for arithmetic progressions. Journal of Number
Theory, 31(3):243–254, 1989.

[JJ98] Gareth A. Jones and J. Mary Jones. Divisibil-
ity. In Elementary Number Theory, pages 1–17.
Springer, London, 1998.

[LU18] Stefan Langerman and Yushi Uno. Threes!, fives,
1024!, and 2048 are hard. Theoretical Computer
Science, 748:17–27, 2018.

[Nic13] Jean-Louis Nicolas. On Landau’s function g(n).
In Ronald L. Graham, Jaroslav Nešetřil, and
Steve Butler, editors, The Mathematics of Paul
Erdős, I, Algorithms and Combinatorics, pages
207–220. Springer, 2013.

[Tao09] Terence Tao. The prime number the-
orem in arithmetic progressions, and
dueling conspiracies. Blog post, 2009.
https://terrytao.wordpress.com/2009/09/
24/the-prime-number-theorem-in-arithmetic-
progressions-and-dueling-conspiracies/.

[Wik20] Wikipedia. 2048 (video game). https://en.
wikipedia.org/wiki/2048 (video game), 2020.

https://github.com/gabrielecirulli/2048
https://play2048.co/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://terrytao.wordpress.com/2009/09/24/the-prime-number-theorem-in-arithmetic-progressions-and-dueling-conspiracies/
https://en.wikipedia.org/wiki/2048_(video_game)
https://en.wikipedia.org/wiki/2048_(video_game)

	Introduction
	Definitions and Basics
	Algorithm
	Bounds on Reachable Configurations
	Long Cycles
	Open Problems

